Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,812 Bytes
6ade495 7d06e7c 6ade495 e7810b5 6ade495 e7810b5 6ade495 8d86538 6ade495 2bb7654 dddd981 6ade495 dddd981 6ade495 edb56d6 dddd981 6ade495 7d06e7c 6ade495 f1c7db2 6ade495 062b78a 6ade495 7d06e7c 6ade495 e7810b5 6ade495 e7810b5 b46562e 2bb7654 e7810b5 b46562e 2bb7654 e7810b5 062b78a 6ade495 dddd981 6ade495 7d06e7c 6ade495 7d06e7c 6ade495 38dcde2 6ade495 dddd981 6ade495 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
import gradio as gr
import numpy as np
import random
import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "black-forest-labs/FLUX.1-dev" #Replace to the model you would like to use
if torch.cuda.is_available():
torch_dtype = torch.bfloat16
else:
torch_dtype = torch.float32
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype, custom_pipeline="pipeline_flux_with_cfg")
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU(duration=75) #[uncomment to use ZeroGPU]
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, true_guidance, num_inference_steps, lora_model, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
pipe.unload_lora_weights()
if lora_model:
pipe.load_lora_weights(lora_model)
image = pipe(
prompt = prompt,
negative_prompt = negative_prompt,
guidance_scale = guidance_scale,
true_cfg = true_guidance,
num_inference_steps = num_inference_steps,
width = width,
height = height,
generator = generator
).images[0]
return image, seed
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css="""
#col-container {
margin: 0 auto;
max-width: 760px;
}
#button{
align-self: stretch;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# FLUX.1 [dev] with CFG (and negative prompts)
""")
#with gr.Row():
with gr.Row():
prompt = gr.Text(
label="Prompt",
max_lines=1,
placeholder="Enter your prompt",
)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
with gr.Row():
guidance_scale = gr.Slider(
label="Distilled Guidance",
minimum=1.0,
maximum=10.0,
step=0.1,
value=1.0, #Replace with defaults that work for your model
)
true_guidance = gr.Slider(
label="True CFG",
minimum=1.0,
maximum=10.0,
step=0.1,
value=5.0, #Replace with defaults that work for your model
)
run_button = gr.Button("Run", scale=0, elem_id="button")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
lora_model = gr.Textbox(label="LoRA model id", placeholder="multimodalart/flux-tarot-v1 ")
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, #Replace with defaults that work for your model
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, #Replace with defaults that work for your model
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28, #Replace with defaults that work for your model
)
gr.Examples(
examples = examples,
inputs = [prompt]
)
gr.on(
triggers=[run_button.click, prompt.submit, negative_prompt.submit],
fn = infer,
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, true_guidance, num_inference_steps, lora_model],
outputs = [result, seed]
)
demo.queue().launch() |