File size: 4,812 Bytes
6ade495
 
 
7d06e7c
6ade495
 
 
 
e7810b5
6ade495
 
e7810b5
6ade495
 
 
8d86538
6ade495
 
 
 
 
2bb7654
dddd981
6ade495
 
 
 
 
dddd981
6ade495
edb56d6
dddd981
 
6ade495
 
 
 
7d06e7c
6ade495
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1c7db2
6ade495
062b78a
 
 
6ade495
 
 
 
 
 
7d06e7c
6ade495
 
e7810b5
6ade495
e7810b5
 
 
 
 
 
 
 
 
 
 
 
b46562e
2bb7654
e7810b5
 
 
 
 
b46562e
2bb7654
e7810b5
 
 
 
062b78a
6ade495
 
 
 
 
dddd981
6ade495
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d06e7c
6ade495
 
 
 
 
 
7d06e7c
6ade495
 
 
 
 
 
 
38dcde2
6ade495
dddd981
6ade495
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import gradio as gr
import numpy as np
import random
import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "black-forest-labs/FLUX.1-dev" #Replace to the model you would like to use

if torch.cuda.is_available():
    torch_dtype = torch.bfloat16
else:
    torch_dtype = torch.float32

pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype, custom_pipeline="pipeline_flux_with_cfg")
pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

@spaces.GPU(duration=75) #[uncomment to use ZeroGPU]
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, true_guidance, num_inference_steps, lora_model, progress=gr.Progress(track_tqdm=True)):

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
        
    generator = torch.Generator().manual_seed(seed)
    pipe.unload_lora_weights()
    
    if lora_model: 
        pipe.load_lora_weights(lora_model)
        
    image = pipe(
        prompt = prompt, 
        negative_prompt = negative_prompt,
        guidance_scale = guidance_scale, 
        true_cfg = true_guidance,
        num_inference_steps = num_inference_steps, 
        width = width, 
        height = height,
        generator = generator
    ).images[0] 
    
    return image, seed

examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 760px;
}
#button{
    align-self: stretch;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # FLUX.1 [dev] with CFG (and negative prompts)
        """)
        
        #with gr.Row():
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                max_lines=1,
                placeholder="Enter your prompt",
            )
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
            )
        with gr.Row():
            guidance_scale = gr.Slider(
                label="Distilled Guidance",
                minimum=1.0,
                maximum=10.0,
                step=0.1,
                value=1.0, #Replace with defaults that work for your model
            )
            true_guidance = gr.Slider(
                label="True CFG",
                minimum=1.0,
                maximum=10.0,
                step=0.1,
                value=5.0, #Replace with defaults that work for your model
            )
            run_button = gr.Button("Run", scale=0, elem_id="button")
        
        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            
            lora_model = gr.Textbox(label="LoRA model id", placeholder="multimodalart/flux-tarot-v1 ")
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024, #Replace with defaults that work for your model
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024, #Replace with defaults that work for your model
                )
            
            with gr.Row():
                
                
                
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=28, #Replace with defaults that work for your model
                )
        
        gr.Examples(
            examples = examples,
            inputs = [prompt]
        )
    gr.on(
        triggers=[run_button.click, prompt.submit, negative_prompt.submit],
        fn = infer,
        inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, true_guidance, num_inference_steps, lora_model],
        outputs = [result, seed]
    )

demo.queue().launch()