Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import random | |
import spaces #[uncomment to use ZeroGPU] | |
from diffusers import DiffusionPipeline | |
import torch | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model_repo_id = "black-forest-labs/FLUX.1-dev" #Replace to the model you would like to use | |
if torch.cuda.is_available(): | |
torch_dtype = torch.bfloat16 | |
else: | |
torch_dtype = torch.float32 | |
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype, custom_pipeline="pipeline_flux_with_cfg") | |
pipe = pipe.to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
#[uncomment to use ZeroGPU] | |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, true_guidance, num_inference_steps, lora_model, progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
pipe.unload_lora_weights() | |
if lora_model: | |
pipe.load_lora_weights(lora_model) | |
image = pipe( | |
prompt = prompt, | |
negative_prompt = negative_prompt, | |
guidance_scale = guidance_scale, | |
true_cfg = true_guidance, | |
num_inference_steps = num_inference_steps, | |
width = width, | |
height = height, | |
generator = generator | |
).images[0] | |
return image, seed | |
examples = [ | |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
"An astronaut riding a green horse", | |
"A delicious ceviche cheesecake slice", | |
] | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 760px; | |
} | |
#button{ | |
align-self: stretch; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f""" | |
# FLUX.1 [dev] with CFG (and negative prompts) | |
""") | |
#with gr.Row(): | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
max_lines=1, | |
placeholder="Enter your prompt", | |
) | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Distilled Guidance", | |
minimum=1.0, | |
maximum=10.0, | |
step=0.1, | |
value=1.0, #Replace with defaults that work for your model | |
) | |
true_guidance = gr.Slider( | |
label="True CFG", | |
minimum=1.0, | |
maximum=10.0, | |
step=0.1, | |
value=5.0, #Replace with defaults that work for your model | |
) | |
run_button = gr.Button("Run", scale=0, elem_id="button") | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
lora_model = gr.Textbox(label="LoRA model id", placeholder="multimodalart/flux-tarot-v1 ") | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, #Replace with defaults that work for your model | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, #Replace with defaults that work for your model | |
) | |
with gr.Row(): | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=28, #Replace with defaults that work for your model | |
) | |
gr.Examples( | |
examples = examples, | |
inputs = [prompt] | |
) | |
gr.on( | |
triggers=[run_button.click, prompt.submit, negative_prompt.submit], | |
fn = infer, | |
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, true_guidance, num_inference_steps, lora_model], | |
outputs = [result, seed] | |
) | |
demo.queue().launch() |