flux-cfg / app.py
multimodalart's picture
Update app.py
edb56d6 verified
import gradio as gr
import numpy as np
import random
import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "black-forest-labs/FLUX.1-dev" #Replace to the model you would like to use
if torch.cuda.is_available():
torch_dtype = torch.bfloat16
else:
torch_dtype = torch.float32
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype, custom_pipeline="pipeline_flux_with_cfg")
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU(duration=75) #[uncomment to use ZeroGPU]
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, true_guidance, num_inference_steps, lora_model, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
pipe.unload_lora_weights()
if lora_model:
pipe.load_lora_weights(lora_model)
image = pipe(
prompt = prompt,
negative_prompt = negative_prompt,
guidance_scale = guidance_scale,
true_cfg = true_guidance,
num_inference_steps = num_inference_steps,
width = width,
height = height,
generator = generator
).images[0]
return image, seed
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css="""
#col-container {
margin: 0 auto;
max-width: 760px;
}
#button{
align-self: stretch;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# FLUX.1 [dev] with CFG (and negative prompts)
""")
#with gr.Row():
with gr.Row():
prompt = gr.Text(
label="Prompt",
max_lines=1,
placeholder="Enter your prompt",
)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
with gr.Row():
guidance_scale = gr.Slider(
label="Distilled Guidance",
minimum=1.0,
maximum=10.0,
step=0.1,
value=1.0, #Replace with defaults that work for your model
)
true_guidance = gr.Slider(
label="True CFG",
minimum=1.0,
maximum=10.0,
step=0.1,
value=5.0, #Replace with defaults that work for your model
)
run_button = gr.Button("Run", scale=0, elem_id="button")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
lora_model = gr.Textbox(label="LoRA model id", placeholder="multimodalart/flux-tarot-v1 ")
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, #Replace with defaults that work for your model
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, #Replace with defaults that work for your model
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28, #Replace with defaults that work for your model
)
gr.Examples(
examples = examples,
inputs = [prompt]
)
gr.on(
triggers=[run_button.click, prompt.submit, negative_prompt.submit],
fn = infer,
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, true_guidance, num_inference_steps, lora_model],
outputs = [result, seed]
)
demo.queue().launch()