import gradio as gr import numpy as np import random import spaces #[uncomment to use ZeroGPU] from diffusers import DiffusionPipeline import torch device = "cuda" if torch.cuda.is_available() else "cpu" model_repo_id = "black-forest-labs/FLUX.1-dev" #Replace to the model you would like to use if torch.cuda.is_available(): torch_dtype = torch.bfloat16 else: torch_dtype = torch.float32 pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype, custom_pipeline="pipeline_flux_with_cfg") pipe = pipe.to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 @spaces.GPU(duration=75) #[uncomment to use ZeroGPU] def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, true_guidance, num_inference_steps, lora_model, progress=gr.Progress(track_tqdm=True)): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) pipe.unload_lora_weights() if lora_model: pipe.load_lora_weights(lora_model) image = pipe( prompt = prompt, negative_prompt = negative_prompt, guidance_scale = guidance_scale, true_cfg = true_guidance, num_inference_steps = num_inference_steps, width = width, height = height, generator = generator ).images[0] return image, seed examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css=""" #col-container { margin: 0 auto; max-width: 760px; } #button{ align-self: stretch; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # FLUX.1 [dev] with CFG (and negative prompts) """) #with gr.Row(): with gr.Row(): prompt = gr.Text( label="Prompt", max_lines=1, placeholder="Enter your prompt", ) negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", ) with gr.Row(): guidance_scale = gr.Slider( label="Distilled Guidance", minimum=1.0, maximum=10.0, step=0.1, value=1.0, #Replace with defaults that work for your model ) true_guidance = gr.Slider( label="True CFG", minimum=1.0, maximum=10.0, step=0.1, value=5.0, #Replace with defaults that work for your model ) run_button = gr.Button("Run", scale=0, elem_id="button") result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): lora_model = gr.Textbox(label="LoRA model id", placeholder="multimodalart/flux-tarot-v1 ") seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, #Replace with defaults that work for your model ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, #Replace with defaults that work for your model ) with gr.Row(): num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=28, #Replace with defaults that work for your model ) gr.Examples( examples = examples, inputs = [prompt] ) gr.on( triggers=[run_button.click, prompt.submit, negative_prompt.submit], fn = infer, inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, true_guidance, num_inference_steps, lora_model], outputs = [result, seed] ) demo.queue().launch(ssr_mode = False)