Spaces:
Runtime error
Runtime error
File size: 24,403 Bytes
2caf84c 0e0ee20 e300c6e c724573 e300c6e 2caf84c 7039ded 607d766 e2c1d93 0e0ee20 c724573 463aefd c724573 4f5b1e9 c59400c c724573 e2c1d93 4f5b1e9 e2c1d93 1816d2d 8dad918 4f5b1e9 9c37890 11166a4 4f5b1e9 2c6e805 89cc8a4 1816d2d 4f5b1e9 89cc8a4 1816d2d 4f5b1e9 89cc8a4 11166a4 1816d2d 11166a4 1816d2d 11166a4 1816d2d 2c6e805 1816d2d 89cc8a4 1816d2d 11166a4 1816d2d 9c05c8d 2c6e805 89cc8a4 1816d2d 4f5b1e9 89cc8a4 1816d2d 4f5b1e9 89cc8a4 11166a4 1816d2d 9c05c8d 2c6e805 89cc8a4 1816d2d 4f5b1e9 89cc8a4 1816d2d 4f5b1e9 89cc8a4 2c6e805 89cc8a4 4f5b1e9 2c6e805 89cc8a4 0e0ee20 e306774 4f5b1e9 e306774 0b5db90 e306774 4f5b1e9 e306774 f407351 e306774 f407351 e306774 f407351 80e4d04 e306774 f407351 4f5b1e9 e306774 f407351 4f5b1e9 e306774 4f5b1e9 e306774 4f5b1e9 e306774 f407351 e306774 4f5b1e9 e306774 f407351 4f5b1e9 582601f 4f5b1e9 582601f 4f5b1e9 e306774 4f5b1e9 e306774 4f5b1e9 e306774 4f5b1e9 e306774 4f5b1e9 e306774 4f5b1e9 e306774 4f5b1e9 e306774 4f5b1e9 e306774 b848b4b bc76095 e306774 bc76095 e306774 4f5b1e9 e306774 4f5b1e9 e306774 4f5b1e9 e306774 4f5b1e9 e306774 4f5b1e9 2caf84c 0b93385 1441e58 07d3eff 8648a3b 504da62 4f5b1e9 16490f6 2caf84c 2c6e805 1816d2d 2caf84c 3c05113 7ffee86 c671c40 48a9f62 07d3eff 2c6e805 1500e0d 504da62 e8387c2 504da62 1816d2d d6802e8 1816d2d aff90d1 7ffee86 c671c40 e96451d 00760cd e96451d 1f249cc f073ba5 d61b660 32222a1 61a20b7 32222a1 c198f03 3a0c1de f073ba5 1f249cc f073ba5 d61b660 32222a1 61a20b7 9c37890 c198f03 32222a1 0e0ee20 457748c bc76095 48a9f62 9590f51 4f5b1e9 0e0ee20 984d7c5 0e0ee20 16490f6 8648a3b 0e0ee20 457748c 89cc8a4 8dce9c7 0e0ee20 2c6d128 e300c6e a5fbe4d 2c6d128 1cbd1d7 4f5b1e9 2c6d128 4f5b1e9 2c6d128 4f5b1e9 5ecece8 1816d2d 89cc8a4 11166a4 1816d2d 89cc8a4 11166a4 1816d2d 89cc8a4 2c6e805 89cc8a4 5ecece8 4f5b1e9 2caf84c 2c6e805 4f5b1e9 2caf84c 4f5b1e9 2caf84c 4f5b1e9 2caf84c 07d3eff 0e0ee20 1816d2d 3c05113 0e0ee20 2c6e805 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 |
import os
import gradio as gr
import json
import logging
import torch
from PIL import Image
import spaces
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
from diffusers.utils import load_image
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
import copy
import random
import time
# Load LoRAs from JSON file
with open('loras.json', 'r') as f:
loras = json.load(f)
# Initialize the base model
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = "black-forest-labs/FLUX.1-dev"
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
base_model,
vae=good_vae,
transformer=pipe.transformer,
text_encoder=pipe.text_encoder,
tokenizer=pipe.tokenizer,
text_encoder_2=pipe.text_encoder_2,
tokenizer_2=pipe.tokenizer_2,
torch_dtype=dtype
)
MAX_SEED = 2**32 - 1
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
def update_selection(evt: gr.SelectData, selected_indices, width, height):
selected_index = evt.index
selected_indices = selected_indices or []
if selected_index in selected_indices:
# LoRA is already selected, remove it
selected_indices.remove(selected_index)
else:
if len(selected_indices) < 2:
selected_indices.append(selected_index)
else:
gr.Warning("You can select up to 2 LoRAs, remove one to select a new one.")
return (
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
)
# Initialize outputs
selected_info_1 = "Select a LoRA 1"
selected_info_2 = "Select a LoRA 2"
lora_scale_1 = 0.95
lora_scale_2 = 0.95
lora_image_1 = None
lora_image_2 = None
if len(selected_indices) >= 1:
lora1 = loras[selected_indices[0]]
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨"
lora_image_1 = lora1['image']
if len(selected_indices) >= 2:
lora2 = loras[selected_indices[1]]
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨"
lora_image_2 = lora2['image']
# Update prompt placeholder based on last selected LoRA
if selected_indices:
last_selected_lora = loras[selected_indices[-1]]
new_placeholder = f"Type a prompt for {last_selected_lora['title']}"
else:
new_placeholder = "Type a prompt after selecting a LoRA"
return (
gr.update(placeholder=new_placeholder),
selected_info_1,
selected_info_2,
selected_indices,
lora_scale_1,
lora_scale_2,
width,
height,
lora_image_1,
lora_image_2,
)
def remove_lora_1(selected_indices):
selected_indices = selected_indices or []
if len(selected_indices) >= 1:
selected_indices.pop(0)
# Update selected_info_1 and selected_info_2
selected_info_1 = "Select a LoRA 1"
selected_info_2 = "Select a LoRA 2"
lora_scale_1 = 0.95
lora_scale_2 = 0.95
lora_image_1 = None
lora_image_2 = None
if len(selected_indices) >= 1:
lora1 = loras[selected_indices[0]]
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨"
lora_image_1 = lora1['image']
if len(selected_indices) >= 2:
lora2 = loras[selected_indices[1]]
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨"
lora_image_2 = lora2['image']
return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2
def remove_lora_2(selected_indices):
selected_indices = selected_indices or []
if len(selected_indices) >= 2:
selected_indices.pop(1)
# Update selected_info_1 and selected_info_2
selected_info_1 = "Select a LoRA 1"
selected_info_2 = "Select a LoRA 2"
lora_scale_1 = 0.95
lora_scale_2 = 0.95
lora_image_1 = None
lora_image_2 = None
if len(selected_indices) >= 1:
lora1 = loras[selected_indices[0]]
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨"
lora_image_1 = lora1['image']
if len(selected_indices) >= 2:
lora2 = loras[selected_indices[1]]
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨"
lora_image_2 = lora2['image']
return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2
def randomize_loras(selected_indices):
if len(loras) < 2:
raise gr.Error("Not enough LoRAs to randomize.")
selected_indices = random.sample(range(len(loras)), 2)
lora1 = loras[selected_indices[0]]
lora2 = loras[selected_indices[1]]
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨"
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨"
lora_scale_1 = 0.95
lora_scale_2 = 0.95
lora_image_1 = lora1['image']
lora_image_2 = lora2['image']
return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2
@spaces.GPU(duration=70)
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress):
print("Generating image...")
pipe.to("cuda")
generator = torch.Generator(device="cuda").manual_seed(seed)
with calculateDuration("Generating image"):
# Generate image
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=prompt_mash,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": 1.0},
output_type="pil",
good_vae=good_vae,
):
yield img
@spaces.GPU(duration=70)
def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, seed):
pipe_i2i.to("cuda")
generator = torch.Generator(device="cuda").manual_seed(seed)
image_input = load_image(image_input_path)
final_image = pipe_i2i(
prompt=prompt_mash,
image=image_input,
strength=image_strength,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": 1.0},
output_type="pil",
).images[0]
return final_image
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height, progress=gr.Progress(track_tqdm=True)):
if not selected_indices:
raise gr.Error("You must select at least one LoRA before proceeding.")
selected_loras = [loras[idx] for idx in selected_indices]
# Build the prompt with trigger words
prepends = []
appends = []
for lora in selected_loras:
trigger_word = lora.get('trigger_word', '')
if trigger_word:
if lora.get("trigger_position") == "prepend":
prepends.append(trigger_word)
else:
appends.append(trigger_word)
prompt_mash = " ".join(prepends + [prompt] + appends)
print("Prompt Mash: ", prompt_mash)
# Unload previous LoRA weights
with calculateDuration("Unloading LoRA"):
pipe.unload_lora_weights()
pipe_i2i.unload_lora_weights()
# Load LoRA weights with respective scales
lora_names = []
lora_weights = []
with calculateDuration("Loading LoRA weights"):
for idx, lora in enumerate(selected_loras):
lora_name = f"lora_{idx}"
lora_names.append(lora_name)
lora_weights.append(lora_scale_1 if idx == 0 else lora_scale_2)
lora_path = lora['repo']
weight_name = lora.get("weights")
if image_input is not None:
if weight_name:
pipe_i2i.load_lora_weights(lora_path, weight_name=weight_name, low_cpu_mem_usage=True, adapter_name=lora_name)
else:
pipe_i2i.load_lora_weights(lora_path, low_cpu_mem_usage=True, adapter_name=lora_name)
else:
if weight_name:
pipe.load_lora_weights(lora_path, weight_name=weight_name, low_cpu_mem_usage=True, adapter_name=lora_name)
else:
pipe.load_lora_weights(lora_path, low_cpu_mem_usage=True, adapter_name=lora_name)
print("Loaded LoRAs:", lora_names)
if image_input is not None:
pipe_i2i.set_adapters(lora_names, adapter_weights=lora_weights)
else:
pipe.set_adapters(lora_names, adapter_weights=lora_weights)
# Set random seed for reproducibility
with calculateDuration("Randomizing seed"):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Generate image
if image_input is not None:
final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, seed)
yield final_image, seed, gr.update(visible=False)
else:
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress)
# Consume the generator to get the final image
final_image = None
step_counter = 0
for image in image_generator:
step_counter += 1
final_image = image
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
yield image, seed, gr.update(value=progress_bar, visible=True)
yield final_image, seed, gr.update(value=progress_bar, visible=False)
def get_huggingface_safetensors(link):
split_link = link.split("/")
if len(split_link) == 2:
model_card = ModelCard.load(link)
base_model = model_card.data.get("base_model")
print(f"Base model: {base_model}")
if base_model not in ["black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"]:
raise Exception("Not a FLUX LoRA!")
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
trigger_word = model_card.data.get("instance_prompt", "")
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
fs = HfFileSystem()
safetensors_name = None
try:
list_of_files = fs.ls(link, detail=False)
for file in list_of_files:
if file.endswith(".safetensors"):
safetensors_name = file.split("/")[-1]
if not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp")):
image_elements = file.split("/")
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
except Exception as e:
print(e)
raise Exception("Invalid Hugging Face repository with a *.safetensors LoRA")
if not safetensors_name:
raise Exception("No *.safetensors file found in the repository")
return split_link[1], link, safetensors_name, trigger_word, image_url
else:
raise Exception("Invalid Hugging Face repository link")
def check_custom_model(link):
if link.endswith(".safetensors"):
# Treat as direct link to the LoRA weights
title = os.path.basename(link)
repo = link
path = None # No specific weight name
trigger_word = ""
image_url = None
return title, repo, path, trigger_word, image_url
elif link.startswith("https://"):
if "huggingface.co" in link:
link_split = link.split("huggingface.co/")
return get_huggingface_safetensors(link_split[1])
else:
raise Exception("Unsupported URL")
else:
# Assume it's a Hugging Face model path
return get_huggingface_safetensors(link)
def add_custom_lora(custom_lora, selected_indices):
global loras
if custom_lora:
try:
title, repo, path, trigger_word, image = check_custom_model(custom_lora)
print(f"Loaded custom LoRA: {repo}")
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
if existing_item_index is None:
new_item = {
"image": image,
"title": title,
"repo": repo,
"weights": path,
"trigger_word": trigger_word
}
print(f"New LoRA: {new_item}")
existing_item_index = len(loras)
loras.append(new_item)
# Update gallery
gallery_items = [(item["image"], item["title"]) for item in loras]
# Update selected_indices if there's room
if len(selected_indices) < 2:
selected_indices.append(existing_item_index)
else:
gr.Warning("You can select up to 2 LoRAs, remove one to select a new one.")
# Update selected_info and images
selected_info_1 = "Select a LoRA 1"
selected_info_2 = "Select a LoRA 2"
lora_scale_1 = 0.95
lora_scale_2 = 0.95
lora_image_1 = None
lora_image_2 = None
if len(selected_indices) >= 1:
lora1 = loras[selected_indices[0]]
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨"
lora_image_1 = lora1['image']
if len(selected_indices) >= 2:
lora2 = loras[selected_indices[1]]
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨"
lora_image_2 = lora2['image']
return (
gr.update(value=gallery_items),
selected_info_1,
selected_info_2,
selected_indices,
lora_scale_1,
lora_scale_2,
lora_image_1,
lora_image_2
)
except Exception as e:
print(e)
gr.Warning(str(e))
return gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update()
else:
return gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update()
def remove_custom_lora(selected_indices):
global loras
if loras:
custom_lora_repo = loras[-1]['repo']
# Remove from loras list
loras = loras[:-1]
# Remove from selected_indices if selected
custom_lora_index = len(loras)
if custom_lora_index in selected_indices:
selected_indices.remove(custom_lora_index)
# Update gallery
gallery_items = [(item["image"], item["title"]) for item in loras]
# Update selected_info and images
selected_info_1 = "Select a LoRA 1"
selected_info_2 = "Select a LoRA 2"
lora_scale_1 = 0.95
lora_scale_2 = 0.95
lora_image_1 = None
lora_image_2 = None
if len(selected_indices) >= 1:
lora1 = loras[selected_indices[0]]
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨"
lora_image_1 = lora1['image']
if len(selected_indices) >= 2:
lora2 = loras[selected_indices[1]]
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨"
lora_image_2 = lora2['image']
return (
gr.update(value=gallery_items),
selected_info_1,
selected_info_2,
selected_indices,
lora_scale_1,
lora_scale_2,
lora_image_1,
lora_image_2
)
run_lora.zerogpu = True
css = '''
#gen_btn{height: 100%}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
#gallery{height: 260px}
#gallery .grid-wrap{height: 5vh}
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
.custom_lora_card{margin-bottom: 1em}
.card_internal{display: flex;height: 100px;margin-top: .5em}
.card_internal img{margin-right: 1em}
.styler{--form-gap-width: 0px !important}
#progress{height:30px}
#progress .generating{display:none}
.progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
.progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
.button_total{height: 100%}
#loaded_loras [data-testid="block-info"]{font-size:80%}
#custom_lora_structure{background: var(--block-background-fill)}
#custom_lora_btn{margin-top: auto;margin-bottom: 11px}
'''
with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 3600)) as app:
title = gr.HTML(
"""<h1><img src="https://i.imgur.com/L3uECk5.png" alt="LoRA"> LoRA Lab</h1>""",
elem_id="title",
)
selected_indices = gr.State([])
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
with gr.Column(scale=1):
generate_button = gr.Button("Generate", variant="primary", elem_classes=["button_total"])
with gr.Row(elem_id="loaded_loras"):
with gr.Column(scale=1, min_width=25):
randomize_button = gr.Button("🎲", variant="secondary", scale=1)
with gr.Column(scale=8):
with gr.Row():
with gr.Column(scale=0, min_width=50):
lora_image_1 = gr.Image(label="LoRA 1 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
with gr.Column(scale=3, min_width=100):
selected_info_1 = gr.Markdown("Select a LoRA 1")
with gr.Column(scale=5, min_width=50):
lora_scale_1 = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=3, step=0.01, value=0.95)
with gr.Row():
remove_button_1 = gr.Button("Remove", size="sm")
with gr.Column(scale=8):
with gr.Row():
with gr.Column(scale=0, min_width=50):
lora_image_2 = gr.Image(label="LoRA 2 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
with gr.Column(scale=3, min_width=100):
selected_info_2 = gr.Markdown("Select a LoRA 2")
with gr.Column(scale=5, min_width=50):
lora_scale_2 = gr.Slider(label="LoRA 2 Scale", minimum=0, maximum=3, step=0.01, value=0.95)
with gr.Row():
remove_button_2 = gr.Button("Remove", size="sm")
with gr.Row():
with gr.Column():
with gr.Group():
with gr.Row(elem_id="custom_lora_structure"):
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path or *.safetensors public URL", placeholder="multimodalart/vintage-ads-flux", scale=3, min_width=150)
add_custom_lora_button = gr.Button("Add Custom LoRA", elem_id="custom_lora_btn", scale=2, min_width=150)
remove_custom_lora_button = gr.Button("Remove Custom LoRA", visible=False)
gr.Markdown("[Check the list of FLUX LoRAs](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
gallery = gr.Gallery(
[(item["image"], item["title"]) for item in loras],
label="Or pick from the LoRA Explorer gallery",
allow_preview=False,
columns=5,
elem_id="gallery"
)
with gr.Column():
progress_bar = gr.Markdown(elem_id="progress", visible=False)
result = gr.Image(label="Generated Image")
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
input_image = gr.Image(label="Input image", type="filepath")
image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
with gr.Column():
with gr.Row():
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
with gr.Row():
randomize_seed = gr.Checkbox(True, label="Randomize seed")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
gallery.select(
update_selection,
inputs=[selected_indices, width, height],
outputs=[prompt, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, width, height, lora_image_1, lora_image_2]
)
remove_button_1.click(
remove_lora_1,
inputs=[selected_indices],
outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
)
remove_button_2.click(
remove_lora_2,
inputs=[selected_indices],
outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
)
randomize_button.click(
randomize_loras,
inputs=[selected_indices],
outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
)
add_custom_lora_button.click(
add_custom_lora,
inputs=[custom_lora, selected_indices],
outputs=[gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
)
remove_custom_lora_button.click(
remove_custom_lora,
inputs=[selected_indices],
outputs=[gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
)
gr.on(
triggers=[generate_button.click, prompt.submit],
fn=run_lora,
inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height],
outputs=[result, seed, progress_bar]
)
app.queue()
app.launch()
|