multimodalart HF staff KingNish commited on
Commit
2600319
·
verified ·
1 Parent(s): 47f39df

Added History (#1)

Browse files

- Added History (9097f863eef879fdaa9f285a5573b4e16ae78a10)


Co-authored-by: Nishith Jain <KingNish@users.noreply.huggingface.co>

Files changed (1) hide show
  1. app.py +16 -3
app.py CHANGED
@@ -270,7 +270,7 @@ def remove_custom_lora(selected_indices, current_loras):
270
  lora_image_2
271
  )
272
 
273
- @spaces.GPU(duration=70)
274
  def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress):
275
  print("Generating image...")
276
  pipe.to("cuda")
@@ -291,7 +291,7 @@ def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress)
291
  yield img
292
  pipe.to("cpu")
293
 
294
- @spaces.GPU(duration=70)
295
  def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, seed):
296
  pipe_i2i.to("cuda")
297
  generator = torch.Generator(device="cuda").manual_seed(seed)
@@ -311,7 +311,7 @@ def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps
311
  pipe_i2i.to("cpu")
312
  return final_image
313
 
314
- @spaces.GPU(duration=70)
315
  def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height, loras_state, progress=gr.Progress(track_tqdm=True)):
316
  if not selected_indices:
317
  raise gr.Error("You must select at least one LoRA before proceeding.")
@@ -435,6 +435,13 @@ def check_custom_model(link):
435
  # Assume it's a Hugging Face model path
436
  return get_huggingface_safetensors(link)
437
 
 
 
 
 
 
 
 
438
  css = '''
439
  #gen_btn{height: 100%}
440
  #title{text-align: center}
@@ -514,6 +521,8 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 3600)) as app:
514
  with gr.Column():
515
  progress_bar = gr.Markdown(elem_id="progress", visible=False)
516
  result = gr.Image(label="Generated Image")
 
 
517
  with gr.Row():
518
  with gr.Accordion("Advanced Settings", open=False):
519
  with gr.Row():
@@ -566,6 +575,10 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 3600)) as app:
566
  fn=run_lora,
567
  inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height, loras_state],
568
  outputs=[result, seed, progress_bar]
 
 
 
 
569
  )
570
 
571
  app.queue()
 
270
  lora_image_2
271
  )
272
 
273
+ @spaces.GPU(duration=90)
274
  def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress):
275
  print("Generating image...")
276
  pipe.to("cuda")
 
291
  yield img
292
  pipe.to("cpu")
293
 
294
+ @spaces.GPU(duration=90)
295
  def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, seed):
296
  pipe_i2i.to("cuda")
297
  generator = torch.Generator(device="cuda").manual_seed(seed)
 
311
  pipe_i2i.to("cpu")
312
  return final_image
313
 
314
+ @spaces.GPU(duration=90)
315
  def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height, loras_state, progress=gr.Progress(track_tqdm=True)):
316
  if not selected_indices:
317
  raise gr.Error("You must select at least one LoRA before proceeding.")
 
435
  # Assume it's a Hugging Face model path
436
  return get_huggingface_safetensors(link)
437
 
438
+ def update_history(new_image, history):
439
+ """Updates the history gallery with the new image."""
440
+ if history is None:
441
+ history = []
442
+ history.insert(0, new_image)
443
+ return history
444
+
445
  css = '''
446
  #gen_btn{height: 100%}
447
  #title{text-align: center}
 
521
  with gr.Column():
522
  progress_bar = gr.Markdown(elem_id="progress", visible=False)
523
  result = gr.Image(label="Generated Image")
524
+ history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain")
525
+
526
  with gr.Row():
527
  with gr.Accordion("Advanced Settings", open=False):
528
  with gr.Row():
 
575
  fn=run_lora,
576
  inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height, loras_state],
577
  outputs=[result, seed, progress_bar]
578
+ ).then( # Update the history gallery
579
+ fn=lambda x, history: update_history(x[1], history),
580
+ inputs=[result, history_gallery],
581
+ outputs=history_gallery,
582
  )
583
 
584
  app.queue()