import gradio as gr import requests def quick_search_query(query, repo_type): if not query: return [] url = f"https://huggingface.co/api/quicksearch?q={query}&type={repo_type}&limit=20" response = requests.get(url) if response.status_code == 200: data = response.json() repo_names = [d['id'] for d in data[f"{repo_type}s"]] return repo_names else: return ["Error fetching repo"] def update_dropdown(query, repo_type, key_up_data: gr.KeyUpData): datasets = quick_search_query(key_up_data.input_value, repo_type) return gr.update(choices=datasets, visible=True) with gr.Blocks() as demo: model_dropdown = gr.Dropdown(label="Models Auto-Complete", choices=[""], allow_custom_value=True) model_dropdown.key_up(fn=update_dropdown, inputs=[model_dropdown, gr.State("model")], outputs=model_dropdown, queue=False, show_progress="hidden") dataset_dropdown = gr.Dropdown(label="Datasets Auto-Complete", choices=[""], allow_custom_value=True) dataset_dropdown.key_up(fn=update_dropdown, inputs=[dataset_dropdown, gr.State("dataset")], outputs=dataset_dropdown, queue=False, show_progress="hidden") spaces_dropdown = gr.Dropdown(label="Spaces Auto-Complete", choices=[""], allow_custom_value=True) spaces_dropdown.key_up(fn=update_dropdown, inputs=[spaces_dropdown, gr.State("space")], outputs=spaces_dropdown, queue=False, show_progress="hidden") demo.launch()