File size: 15,347 Bytes
edb0494
6405936
 
 
 
 
 
edb0494
6405936
 
edb0494
a7d8817
d49f90c
86427d8
 
 
a7d8817
6405936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fd7963
3df2fdf
3fd7963
 
 
 
 
4ab7724
3df2fdf
5f1be76
e5a75ef
8263fc6
e5a75ef
 
3df2fdf
 
 
 
 
 
 
 
 
 
 
 
 
4d0dd5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c37eeb3
3fd7963
 
86427d8
3df2fdf
3fd7963
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c37eeb3
e5a75ef
 
c37eeb3
e5a75ef
 
3fd7963
3df2fdf
3fd7963
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c37eeb3
e5a75ef
 
6405936
3fd7963
4ab7724
 
 
 
 
 
 
 
6405936
 
 
 
 
 
4ab7724
6405936
4ab7724
6405936
 
a7d8817
6405936
a7d8817
15a8627
3fd7963
3df2fdf
3fd7963
 
 
3df2fdf
5bc9409
e5a75ef
 
 
5bc9409
e5a75ef
 
 
33d7a35
 
 
 
5bc9409
3fd7963
6405936
3fd7963
 
 
 
 
3df2fdf
 
3fd7963
 
e5a75ef
4d0dd5d
 
 
845c0fb
86427d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f1be76
4fa3624
86427d8
 
291af92
86427d8
65fb376
 
 
 
86427d8
 
 
 
 
65fc70e
86427d8
65fc70e
86427d8
 
291af92
 
97567b1
 
40a5fd5
97567b1
 
 
291af92
6405936
97567b1
976671e
 
 
 
 
 
 
3fd7963
976671e
3fd7963
 
 
4799169
3fd7963
4799169
 
4ab7724
40a5fd5
3fd7963
33d7a35
4799169
 
 
40a5fd5
 
3fd7963
 
 
4799169
 
3fd7963
4ab7724
4799169
3fd7963
5bc9409
 
 
 
3fd7963
5bc9409
4799169
5bc9409
 
 
 
3fd7963
5bc9409
4799169
5bc9409
 
c37eeb3
3fd7963
 
 
 
a82fc93
3fd7963
 
4d0dd5d
 
 
 
4799169
4d0dd5d
 
 
 
 
 
62b6014
4d0dd5d
 
86427d8
4799169
 
4ab7724
976671e
 
 
 
4799169
976671e
3fd7963
86427d8
5f1be76
 
 
 
 
 
 
3fd7963
86427d8
3fd7963
 
 
 
 
 
 
 
5bc9409
3fd7963
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bc9409
4d0dd5d
 
 
 
 
 
 
3fd7963
6405936
 
 
 
 
976671e
3fd7963
4d0dd5d
6405936
3fd7963
 
 
 
6405936
 
4ab7724
 
 
 
 
 
3fd7963
4d0dd5d
4ab7724
3fd7963
 
 
 
4ab7724
6405936
86427d8
 
 
1ea50b5
86427d8
 
 
3fd7963
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
import gradio as gr
import spaces
import torch
from diffusers import AutoencoderKL, TCDScheduler
from diffusers.models.model_loading_utils import load_state_dict
from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download

from controlnet_union import ControlNetModel_Union
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline

from PIL import Image, ImageDraw
import numpy as np
import cv2
import tempfile
import os

config_file = hf_hub_download(
    "xinsir/controlnet-union-sdxl-1.0",
    filename="config_promax.json",
)

config = ControlNetModel_Union.load_config(config_file)
controlnet_model = ControlNetModel_Union.from_config(config)
model_file = hf_hub_download(
    "xinsir/controlnet-union-sdxl-1.0",
    filename="diffusion_pytorch_model_promax.safetensors",
)
state_dict = load_state_dict(model_file)
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
    controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
)
model.to(device="cuda", dtype=torch.float16)

vae = AutoencoderKL.from_pretrained(
    "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
).to("cuda")

pipe = StableDiffusionXLFillPipeline.from_pretrained(
    "SG161222/RealVisXL_V5.0_Lightning",
    torch_dtype=torch.float16,
    vae=vae,
    controlnet=model,
    variant="fp16",
).to("cuda")

pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)

def can_expand(source_width, source_height, target_width, target_height, alignment):
    """Checks if the image can be expanded based on the alignment."""
    if alignment in ("Left", "Right") and source_width >= target_width:
        return False
    if alignment in ("Top", "Bottom") and source_height >= target_height:
        return False
    return True

@spaces.GPU(duration=24)
def infer(image, width=1024, height=1024, overlap_width=18, num_inference_steps=8, resize_option="custom", custom_resize_size=768, prompt_input=None, alignment="Middle"):
    source = image
    target_size = (width, height)
    overlap = overlap_width

    # Upscale if source is smaller than target in both dimensions
    if source.width < target_size[0] and source.height < target_size[1]:
        scale_factor = min(target_size[0] / source.width, target_size[1] / source.height)
        new_width = int(source.width * scale_factor)
        new_height = int(source.height * scale_factor)
        source = source.resize((new_width, new_height), Image.LANCZOS)

    if source.width > target_size[0] or source.height > target_size[1]:
        scale_factor = min(target_size[0] / source.width, target_size[1] / source.height)
        new_width = int(source.width * scale_factor)
        new_height = int(source.height * scale_factor)
        source = source.resize((new_width, new_height), Image.LANCZOS)
    
    if resize_option == "Full":
        resize_size = max(source.width, source.height)
    elif resize_option == "1/2":
        resize_size = max(source.width, source.height) // 2
    elif resize_option == "1/3":
        resize_size = max(source.width, source.height) // 3
    elif resize_option == "1/4":
        resize_size = max(source.width, source.height) // 4
    else:  # Custom
        resize_size = custom_resize_size

    aspect_ratio = source.height / source.width
    new_width = resize_size
    new_height = int(resize_size * aspect_ratio)
    source = source.resize((new_width, new_height), Image.LANCZOS)

    if not can_expand(source.width, source.height, target_size[0], target_size[1], alignment):
        alignment = "Middle"

    # Calculate margins based on alignment
    if alignment == "Middle":
        margin_x = (target_size[0] - source.width) // 2
        margin_y = (target_size[1] - source.height) // 2
    elif alignment == "Left":
        margin_x = 0
        margin_y = (target_size[1] - source.height) // 2
    elif alignment == "Right":
        margin_x = target_size[0] - source.width
        margin_y = (target_size[1] - source.height) // 2
    elif alignment == "Top":
        margin_x = (target_size[0] - source.width) // 2
        margin_y = 0
    elif alignment == "Bottom":
        margin_x = (target_size[0] - source.width) // 2
        margin_y = target_size[1] - source.height

    background = Image.new('RGB', target_size, (255, 255, 255))
    background.paste(source, (margin_x, margin_y))

    mask = Image.new('L', target_size, 255)
    mask_draw = ImageDraw.Draw(mask)

    # Adjust mask generation based on alignment
    if alignment == "Middle":
        mask_draw.rectangle([
            (margin_x + overlap, margin_y + overlap),
            (margin_x + source.width - overlap, margin_y + source.height - overlap)
        ], fill=0)
    elif alignment == "Left":
        mask_draw.rectangle([
            (margin_x, margin_y),
            (margin_x + source.width - overlap, margin_y + source.height)
        ], fill=0)
    elif alignment == "Right":
        mask_draw.rectangle([
            (margin_x + overlap, margin_y),
            (margin_x + source.width, margin_y + source.height)
        ], fill=0)
    elif alignment == "Top":
        mask_draw.rectangle([
            (margin_x, margin_y),
            (margin_x + source.width, margin_y + source.height - overlap)
        ], fill=0)
    elif alignment == "Bottom":
        mask_draw.rectangle([
            (margin_x, margin_y + overlap),
            (margin_x + source.width, margin_y + source.height)
        ], fill=0)

    cnet_image = background.copy()
    cnet_image.paste(0, (0, 0), mask)

    final_prompt = f"{prompt_input} , high quality, 4k"

    (
        prompt_embeds,
        negative_prompt_embeds,
        pooled_prompt_embeds,
        negative_pooled_prompt_embeds,
    ) = pipe.encode_prompt(final_prompt, "cuda", True)

    for image in pipe(
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
        image=cnet_image,
        num_inference_steps=num_inference_steps
    ):
        yield cnet_image, image

    image = image.convert("RGBA")
    cnet_image.paste(image, (0, 0), mask)

    yield background, cnet_image

def clear_result():
    """Clears the result ImageSlider."""
    return gr.update(value=None)

def preload_presets(target_ratio, ui_width, ui_height):
    """Updates the width and height sliders based on the selected aspect ratio."""
    if target_ratio == "9:16":
        changed_width = 720
        changed_height = 1280
        return changed_width, changed_height, gr.update(open=False)
    elif target_ratio == "16:9":
        changed_width = 1280
        changed_height = 720
        return changed_width, changed_height, gr.update(open=False)
    elif target_ratio == "1:1":
        changed_width = 1024
        changed_height = 1024
        return changed_width, changed_height, gr.update(open=False)
    elif target_ratio == "Custom":
        return ui_width, ui_height, gr.update(open=True)

def select_the_right_preset(user_width, user_height):
    if user_width == 720 and user_height == 1280:
        return "9:16"
    elif user_width == 1280 and user_height == 720:
        return "16:9"
    elif user_width == 1024 and user_height == 1024:
        return "1:1"
    else:
        return "Custom"

def toggle_custom_resize_slider(resize_option):
    return gr.update(visible=(resize_option == "Custom"))

def create_video_from_images(image_list, fps=4):
    if not image_list:
        return None
    
    with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as temp_video_file:
        video_path = temp_video_file.name

    frame = np.array(image_list[0])
    height, width, layers = frame.shape
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    video = cv2.VideoWriter(video_path, fourcc, fps, (width, height))

    for image in image_list:
        video.write(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR))

    video.release()
    return video_path

def loop_outpainting(image, width=1024, height=1024, overlap_width=18, num_inference_steps=8, resize_option="custom", custom_resize_size=768, prompt_input=None, alignment="Middle", num_iterations=18, fps=6, progress=gr.Progress()):
    image_list = [image]
    current_image = image

    for _ in progress.tqdm(range(num_iterations), desc="Generating frames"):
        # Generate new image
        for step_result in infer(current_image, width, height, overlap_width, num_inference_steps, resize_option, custom_resize_size, prompt_input, alignment):
            pass  # Process all steps
        
        new_image = step_result[1]  # Get the final image from the last step
        image_list.append(new_image)
        
        # Use new image as input for next iteration
        current_image = new_image

    reverse_image_list = image_list[::-1]
    # Create video from image list
    video_path = create_video_from_images(reverse_image_list, fps)
    return video_path

loop_outpainting.zerogpu = True

css = """
.gradio-container {
    width: 1200px !important;
}
"""

title = """<h1 align="center">Outpaint Video Zoom-In</h1>"""

with gr.Blocks(css=css) as demo:
    with gr.Column():
        gr.HTML(title)

        with gr.Row():
            with gr.Column():
                input_image = gr.Image(
                    type="pil",
                    label="Input Image"
                )

                with gr.Row():
                    with gr.Column(scale=2):
                        prompt_input = gr.Textbox(label="Prompt (Optional)", visible=False)
                    with gr.Column(scale=1):
                        run_button = gr.Button("Generate", visible=False)
                        loop_button = gr.Button("Create outpainting video")
                with gr.Row():
                    target_ratio = gr.Radio(
                        label="Expected Ratio",
                        choices=["9:16", "16:9", "1:1", "Custom"],
                        value="1:1",
                        scale=2,
                        visible=False
                    )
                    
                    alignment_dropdown = gr.Dropdown(
                        choices=["Middle", "Left", "Right", "Top", "Bottom"],
                        value="Middle",
                        label="Alignment",
                        visible=False
                    )

                with gr.Accordion(label="Advanced settings", open=False, visible=False) as settings_panel:
                    with gr.Column():
                        with gr.Row():
                            width_slider = gr.Slider(
                                label="Width",
                                minimum=720,
                                maximum=1536,
                                step=8,
                                value=1024,
                            )
                            height_slider = gr.Slider(
                                label="Height",
                                minimum=720,
                                maximum=1536,
                                step=8,
                                value=1024,
                            )
                        with gr.Row():
                            num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8)
                            overlap_width = gr.Slider(
                                label="Mask overlap width",
                                minimum=1,
                                maximum=50,
                                value=18,
                                step=1
                            )
                        with gr.Row():
                            resize_option = gr.Radio(
                                label="Resize input image",
                                choices=["Full", "1/2", "1/3", "1/4", "Custom"],
                                value="Custom"
                            )
                            custom_resize_size = gr.Slider(
                                label="Custom resize size",
                                minimum=64,
                                maximum=1024,
                                step=8,
                                value=768,
                                visible=False
                            )
                        with gr.Row():
                            num_iterations = gr.Slider(label="Number of iterations", minimum=2, maximum=24, step=1, value=18)
                            fps = gr.Slider(label="fps", minimum=1, maximum=24, value=8)

            with gr.Column():
                result = ImageSlider(
                    interactive=False,
                    label="Generated Image",
                    visible=False
                )
                use_as_input_button = gr.Button("Use as Input Image", visible=False)
                video_output = gr.Video(label="Outpainting Video")
    gr.Example(
        examples=["hide.png", "disaster.png"],
        fn=loop_outpainting,
        inputs=input_image,
        outputs=video_output,
        cache_examples="lazy"
    )
    def use_output_as_input(output_image):
        """Sets the generated output as the new input image."""
        return gr.update(value=output_image[1])

    use_as_input_button.click(
        fn=use_output_as_input,
        inputs=[result],
        outputs=[input_image]
    )
    
    target_ratio.change(
        fn=preload_presets,
        inputs=[target_ratio, width_slider, height_slider],
        outputs=[width_slider, height_slider, settings_panel],
        queue=False
    )

    width_slider.change(
        fn=select_the_right_preset,
        inputs=[width_slider, height_slider],
        outputs=[target_ratio],
        queue=False
    )

    height_slider.change(
        fn=select_the_right_preset,
        inputs=[width_slider, height_slider],
        outputs=[target_ratio],
        queue=False
    )

    resize_option.change(
        fn=toggle_custom_resize_slider,
        inputs=[resize_option],
        outputs=[custom_resize_size],
        queue=False
    )
    
    run_button.click(
        fn=clear_result,
        inputs=None,
        outputs=result,
    ).then(
        fn=infer,
        inputs=[input_image, width_slider, height_slider, overlap_width, num_inference_steps,
                resize_option, custom_resize_size, prompt_input, alignment_dropdown],
        outputs=result,
    ).then(
        fn=lambda: gr.update(visible=True),
        inputs=None,
        outputs=use_as_input_button,
    )

    prompt_input.submit(
        fn=clear_result,
        inputs=None,
        outputs=result,
    ).then(
        fn=infer,
        inputs=[input_image, width_slider, height_slider, overlap_width, num_inference_steps,
                resize_option, custom_resize_size, prompt_input, alignment_dropdown],
        outputs=result,
    ).then(
        fn=lambda: gr.update(visible=True),
        inputs=None,
        outputs=use_as_input_button,
    )

    loop_button.click(
        fn=loop_outpainting,
        inputs=[input_image, width_slider, height_slider, overlap_width, num_inference_steps,
                resize_option, custom_resize_size, prompt_input, alignment_dropdown, num_iterations, fps],
        outputs=video_output,
    )

demo.queue(max_size=12).launch(share=False)