Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,347 Bytes
edb0494 6405936 edb0494 6405936 edb0494 a7d8817 d49f90c 86427d8 a7d8817 6405936 3fd7963 3df2fdf 3fd7963 4ab7724 3df2fdf 5f1be76 e5a75ef 8263fc6 e5a75ef 3df2fdf 4d0dd5d c37eeb3 3fd7963 86427d8 3df2fdf 3fd7963 c37eeb3 e5a75ef c37eeb3 e5a75ef 3fd7963 3df2fdf 3fd7963 c37eeb3 e5a75ef 6405936 3fd7963 4ab7724 6405936 4ab7724 6405936 4ab7724 6405936 a7d8817 6405936 a7d8817 15a8627 3fd7963 3df2fdf 3fd7963 3df2fdf 5bc9409 e5a75ef 5bc9409 e5a75ef 33d7a35 5bc9409 3fd7963 6405936 3fd7963 3df2fdf 3fd7963 e5a75ef 4d0dd5d 845c0fb 86427d8 5f1be76 4fa3624 86427d8 291af92 86427d8 65fb376 86427d8 65fc70e 86427d8 65fc70e 86427d8 291af92 97567b1 40a5fd5 97567b1 291af92 6405936 97567b1 976671e 3fd7963 976671e 3fd7963 4799169 3fd7963 4799169 4ab7724 40a5fd5 3fd7963 33d7a35 4799169 40a5fd5 3fd7963 4799169 3fd7963 4ab7724 4799169 3fd7963 5bc9409 3fd7963 5bc9409 4799169 5bc9409 3fd7963 5bc9409 4799169 5bc9409 c37eeb3 3fd7963 a82fc93 3fd7963 4d0dd5d 4799169 4d0dd5d 62b6014 4d0dd5d 86427d8 4799169 4ab7724 976671e 4799169 976671e 3fd7963 86427d8 5f1be76 3fd7963 86427d8 3fd7963 5bc9409 3fd7963 5bc9409 4d0dd5d 3fd7963 6405936 976671e 3fd7963 4d0dd5d 6405936 3fd7963 6405936 4ab7724 3fd7963 4d0dd5d 4ab7724 3fd7963 4ab7724 6405936 86427d8 1ea50b5 86427d8 3fd7963 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
import gradio as gr
import spaces
import torch
from diffusers import AutoencoderKL, TCDScheduler
from diffusers.models.model_loading_utils import load_state_dict
from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download
from controlnet_union import ControlNetModel_Union
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
from PIL import Image, ImageDraw
import numpy as np
import cv2
import tempfile
import os
config_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="config_promax.json",
)
config = ControlNetModel_Union.load_config(config_file)
controlnet_model = ControlNetModel_Union.from_config(config)
model_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="diffusion_pytorch_model_promax.safetensors",
)
state_dict = load_state_dict(model_file)
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
)
model.to(device="cuda", dtype=torch.float16)
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
).to("cuda")
pipe = StableDiffusionXLFillPipeline.from_pretrained(
"SG161222/RealVisXL_V5.0_Lightning",
torch_dtype=torch.float16,
vae=vae,
controlnet=model,
variant="fp16",
).to("cuda")
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
def can_expand(source_width, source_height, target_width, target_height, alignment):
"""Checks if the image can be expanded based on the alignment."""
if alignment in ("Left", "Right") and source_width >= target_width:
return False
if alignment in ("Top", "Bottom") and source_height >= target_height:
return False
return True
@spaces.GPU(duration=24)
def infer(image, width=1024, height=1024, overlap_width=18, num_inference_steps=8, resize_option="custom", custom_resize_size=768, prompt_input=None, alignment="Middle"):
source = image
target_size = (width, height)
overlap = overlap_width
# Upscale if source is smaller than target in both dimensions
if source.width < target_size[0] and source.height < target_size[1]:
scale_factor = min(target_size[0] / source.width, target_size[1] / source.height)
new_width = int(source.width * scale_factor)
new_height = int(source.height * scale_factor)
source = source.resize((new_width, new_height), Image.LANCZOS)
if source.width > target_size[0] or source.height > target_size[1]:
scale_factor = min(target_size[0] / source.width, target_size[1] / source.height)
new_width = int(source.width * scale_factor)
new_height = int(source.height * scale_factor)
source = source.resize((new_width, new_height), Image.LANCZOS)
if resize_option == "Full":
resize_size = max(source.width, source.height)
elif resize_option == "1/2":
resize_size = max(source.width, source.height) // 2
elif resize_option == "1/3":
resize_size = max(source.width, source.height) // 3
elif resize_option == "1/4":
resize_size = max(source.width, source.height) // 4
else: # Custom
resize_size = custom_resize_size
aspect_ratio = source.height / source.width
new_width = resize_size
new_height = int(resize_size * aspect_ratio)
source = source.resize((new_width, new_height), Image.LANCZOS)
if not can_expand(source.width, source.height, target_size[0], target_size[1], alignment):
alignment = "Middle"
# Calculate margins based on alignment
if alignment == "Middle":
margin_x = (target_size[0] - source.width) // 2
margin_y = (target_size[1] - source.height) // 2
elif alignment == "Left":
margin_x = 0
margin_y = (target_size[1] - source.height) // 2
elif alignment == "Right":
margin_x = target_size[0] - source.width
margin_y = (target_size[1] - source.height) // 2
elif alignment == "Top":
margin_x = (target_size[0] - source.width) // 2
margin_y = 0
elif alignment == "Bottom":
margin_x = (target_size[0] - source.width) // 2
margin_y = target_size[1] - source.height
background = Image.new('RGB', target_size, (255, 255, 255))
background.paste(source, (margin_x, margin_y))
mask = Image.new('L', target_size, 255)
mask_draw = ImageDraw.Draw(mask)
# Adjust mask generation based on alignment
if alignment == "Middle":
mask_draw.rectangle([
(margin_x + overlap, margin_y + overlap),
(margin_x + source.width - overlap, margin_y + source.height - overlap)
], fill=0)
elif alignment == "Left":
mask_draw.rectangle([
(margin_x, margin_y),
(margin_x + source.width - overlap, margin_y + source.height)
], fill=0)
elif alignment == "Right":
mask_draw.rectangle([
(margin_x + overlap, margin_y),
(margin_x + source.width, margin_y + source.height)
], fill=0)
elif alignment == "Top":
mask_draw.rectangle([
(margin_x, margin_y),
(margin_x + source.width, margin_y + source.height - overlap)
], fill=0)
elif alignment == "Bottom":
mask_draw.rectangle([
(margin_x, margin_y + overlap),
(margin_x + source.width, margin_y + source.height)
], fill=0)
cnet_image = background.copy()
cnet_image.paste(0, (0, 0), mask)
final_prompt = f"{prompt_input} , high quality, 4k"
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(final_prompt, "cuda", True)
for image in pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
image=cnet_image,
num_inference_steps=num_inference_steps
):
yield cnet_image, image
image = image.convert("RGBA")
cnet_image.paste(image, (0, 0), mask)
yield background, cnet_image
def clear_result():
"""Clears the result ImageSlider."""
return gr.update(value=None)
def preload_presets(target_ratio, ui_width, ui_height):
"""Updates the width and height sliders based on the selected aspect ratio."""
if target_ratio == "9:16":
changed_width = 720
changed_height = 1280
return changed_width, changed_height, gr.update(open=False)
elif target_ratio == "16:9":
changed_width = 1280
changed_height = 720
return changed_width, changed_height, gr.update(open=False)
elif target_ratio == "1:1":
changed_width = 1024
changed_height = 1024
return changed_width, changed_height, gr.update(open=False)
elif target_ratio == "Custom":
return ui_width, ui_height, gr.update(open=True)
def select_the_right_preset(user_width, user_height):
if user_width == 720 and user_height == 1280:
return "9:16"
elif user_width == 1280 and user_height == 720:
return "16:9"
elif user_width == 1024 and user_height == 1024:
return "1:1"
else:
return "Custom"
def toggle_custom_resize_slider(resize_option):
return gr.update(visible=(resize_option == "Custom"))
def create_video_from_images(image_list, fps=4):
if not image_list:
return None
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as temp_video_file:
video_path = temp_video_file.name
frame = np.array(image_list[0])
height, width, layers = frame.shape
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
video = cv2.VideoWriter(video_path, fourcc, fps, (width, height))
for image in image_list:
video.write(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR))
video.release()
return video_path
def loop_outpainting(image, width=1024, height=1024, overlap_width=18, num_inference_steps=8, resize_option="custom", custom_resize_size=768, prompt_input=None, alignment="Middle", num_iterations=18, fps=6, progress=gr.Progress()):
image_list = [image]
current_image = image
for _ in progress.tqdm(range(num_iterations), desc="Generating frames"):
# Generate new image
for step_result in infer(current_image, width, height, overlap_width, num_inference_steps, resize_option, custom_resize_size, prompt_input, alignment):
pass # Process all steps
new_image = step_result[1] # Get the final image from the last step
image_list.append(new_image)
# Use new image as input for next iteration
current_image = new_image
reverse_image_list = image_list[::-1]
# Create video from image list
video_path = create_video_from_images(reverse_image_list, fps)
return video_path
loop_outpainting.zerogpu = True
css = """
.gradio-container {
width: 1200px !important;
}
"""
title = """<h1 align="center">Outpaint Video Zoom-In</h1>"""
with gr.Blocks(css=css) as demo:
with gr.Column():
gr.HTML(title)
with gr.Row():
with gr.Column():
input_image = gr.Image(
type="pil",
label="Input Image"
)
with gr.Row():
with gr.Column(scale=2):
prompt_input = gr.Textbox(label="Prompt (Optional)", visible=False)
with gr.Column(scale=1):
run_button = gr.Button("Generate", visible=False)
loop_button = gr.Button("Create outpainting video")
with gr.Row():
target_ratio = gr.Radio(
label="Expected Ratio",
choices=["9:16", "16:9", "1:1", "Custom"],
value="1:1",
scale=2,
visible=False
)
alignment_dropdown = gr.Dropdown(
choices=["Middle", "Left", "Right", "Top", "Bottom"],
value="Middle",
label="Alignment",
visible=False
)
with gr.Accordion(label="Advanced settings", open=False, visible=False) as settings_panel:
with gr.Column():
with gr.Row():
width_slider = gr.Slider(
label="Width",
minimum=720,
maximum=1536,
step=8,
value=1024,
)
height_slider = gr.Slider(
label="Height",
minimum=720,
maximum=1536,
step=8,
value=1024,
)
with gr.Row():
num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8)
overlap_width = gr.Slider(
label="Mask overlap width",
minimum=1,
maximum=50,
value=18,
step=1
)
with gr.Row():
resize_option = gr.Radio(
label="Resize input image",
choices=["Full", "1/2", "1/3", "1/4", "Custom"],
value="Custom"
)
custom_resize_size = gr.Slider(
label="Custom resize size",
minimum=64,
maximum=1024,
step=8,
value=768,
visible=False
)
with gr.Row():
num_iterations = gr.Slider(label="Number of iterations", minimum=2, maximum=24, step=1, value=18)
fps = gr.Slider(label="fps", minimum=1, maximum=24, value=8)
with gr.Column():
result = ImageSlider(
interactive=False,
label="Generated Image",
visible=False
)
use_as_input_button = gr.Button("Use as Input Image", visible=False)
video_output = gr.Video(label="Outpainting Video")
gr.Example(
examples=["hide.png", "disaster.png"],
fn=loop_outpainting,
inputs=input_image,
outputs=video_output,
cache_examples="lazy"
)
def use_output_as_input(output_image):
"""Sets the generated output as the new input image."""
return gr.update(value=output_image[1])
use_as_input_button.click(
fn=use_output_as_input,
inputs=[result],
outputs=[input_image]
)
target_ratio.change(
fn=preload_presets,
inputs=[target_ratio, width_slider, height_slider],
outputs=[width_slider, height_slider, settings_panel],
queue=False
)
width_slider.change(
fn=select_the_right_preset,
inputs=[width_slider, height_slider],
outputs=[target_ratio],
queue=False
)
height_slider.change(
fn=select_the_right_preset,
inputs=[width_slider, height_slider],
outputs=[target_ratio],
queue=False
)
resize_option.change(
fn=toggle_custom_resize_slider,
inputs=[resize_option],
outputs=[custom_resize_size],
queue=False
)
run_button.click(
fn=clear_result,
inputs=None,
outputs=result,
).then(
fn=infer,
inputs=[input_image, width_slider, height_slider, overlap_width, num_inference_steps,
resize_option, custom_resize_size, prompt_input, alignment_dropdown],
outputs=result,
).then(
fn=lambda: gr.update(visible=True),
inputs=None,
outputs=use_as_input_button,
)
prompt_input.submit(
fn=clear_result,
inputs=None,
outputs=result,
).then(
fn=infer,
inputs=[input_image, width_slider, height_slider, overlap_width, num_inference_steps,
resize_option, custom_resize_size, prompt_input, alignment_dropdown],
outputs=result,
).then(
fn=lambda: gr.update(visible=True),
inputs=None,
outputs=use_as_input_button,
)
loop_button.click(
fn=loop_outpainting,
inputs=[input_image, width_slider, height_slider, overlap_width, num_inference_steps,
resize_option, custom_resize_size, prompt_input, alignment_dropdown, num_iterations, fps],
outputs=video_output,
)
demo.queue(max_size=12).launch(share=False) |