Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,185 Bytes
cc54eed d465e66 d3f8f1d 9ac0d67 cc54eed 7359460 cc54eed 165b975 cc54eed d465e66 cc54eed 7c9588b cc54eed f452e56 cc54eed 1a89b82 cc54eed d465e66 e508ff5 c1e1bbb 7db2e08 1a89b82 7db2e08 e55d6ba 7db2e08 067f7c8 cc54eed 067f7c8 cc54eed d465e66 cc54eed d3e9df1 cc54eed dab252e cc54eed 1a89b82 cc54eed 4bacf14 cc54eed d3e9df1 cc54eed 067f7c8 cc54eed 7db2e08 cc54eed 9e5926a 9ac0d67 cc54eed 56acc31 cc54eed a71ce00 cc54eed 56acc31 cc54eed d465e66 cc54eed 52ef426 cc54eed dc2804b cc54eed 52ef426 cc54eed 945caaf cc54eed 9ac0d67 cc54eed ab2e71e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import os
import random
import gradio as gr
import numpy as np
import PIL.Image
import torch
from typing import List
from diffusers.utils import numpy_to_pil
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
from diffusers.pipelines.wuerstchen import DEFAULT_STAGE_C_TIMESTEPS
import spaces
from previewer.modules import Previewer
import user_history
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
DESCRIPTION = "# Stable Cascade"
DESCRIPTION += "\n<p style=\"text-align: center\">Unofficial demo for <a href='https://huggingface.co/stabilityai/stable-cascade' target='_blank'>Stable Casacade</a>, a new high resolution text-to-image model by Stability AI, built on the Würstchen architecture - <a href='https://huggingface.co/stabilityai/stable-cascade/blob/main/LICENSE' target='_blank'>non-commercial research license</a></p>"
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶</p>"
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") != "0"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1536"))
USE_TORCH_COMPILE = False
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
PREVIEW_IMAGES = True
dtype = torch.bfloat16
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
prior_pipeline = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", torch_dtype=dtype)#.to(device)
decoder_pipeline = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", torch_dtype=dtype)#.to(device)
if ENABLE_CPU_OFFLOAD:
prior_pipeline.enable_model_cpu_offload()
decoder_pipeline.enable_model_cpu_offload()
else:
prior_pipeline.to(device)
decoder_pipeline.to(device)
if USE_TORCH_COMPILE:
prior_pipeline.prior = torch.compile(prior_pipeline.prior, mode="reduce-overhead", fullgraph=True)
decoder_pipeline.decoder = torch.compile(decoder_pipeline.decoder, mode="max-autotune", fullgraph=True)
if PREVIEW_IMAGES:
previewer = Previewer()
previewer_state_dict = torch.load("previewer/previewer_v1_100k.pt", map_location=torch.device('cpu'))["state_dict"]
previewer.load_state_dict(previewer_state_dict)
def callback_prior(i, t, latents):
output = previewer(latents)
output = numpy_to_pil(output.clamp(0, 1).permute(0, 2, 3, 1).float().cpu().numpy())
return output
callback_steps = 1
else:
previewer = None
callback_prior = None
callback_steps = None
else:
prior_pipeline = None
decoder_pipeline = None
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
@spaces.GPU
def generate(
prompt: str,
negative_prompt: str = "",
seed: int = 0,
width: int = 1024,
height: int = 1024,
prior_num_inference_steps: int = 30,
# prior_timesteps: List[float] = None,
prior_guidance_scale: float = 4.0,
decoder_num_inference_steps: int = 12,
# decoder_timesteps: List[float] = None,
decoder_guidance_scale: float = 0.0,
num_images_per_prompt: int = 2,
profile: gr.OAuthProfile | None = None,
) -> PIL.Image.Image:
previewer.eval().requires_grad_(False).to(device).to(dtype)
prior_pipeline.to(device)
decoder_pipeline.to(device)
generator = torch.Generator().manual_seed(seed)
print("prior_num_inference_steps: ", prior_num_inference_steps)
prior_output = prior_pipeline(
prompt=prompt,
height=height,
width=width,
num_inference_steps=prior_num_inference_steps,
timesteps=DEFAULT_STAGE_C_TIMESTEPS,
negative_prompt=negative_prompt,
guidance_scale=prior_guidance_scale,
num_images_per_prompt=num_images_per_prompt,
generator=generator,
callback=callback_prior,
callback_steps=callback_steps
)
if PREVIEW_IMAGES:
for _ in range(len(DEFAULT_STAGE_C_TIMESTEPS)):
r = next(prior_output)
if isinstance(r, list):
yield r[0]
prior_output = r
decoder_output = decoder_pipeline(
image_embeddings=prior_output.image_embeddings,
prompt=prompt,
num_inference_steps=decoder_num_inference_steps,
# timesteps=decoder_timesteps,
guidance_scale=decoder_guidance_scale,
negative_prompt=negative_prompt,
generator=generator,
output_type="pil",
).images
#Save images
for image in decoder_output:
user_history.save_image(
profile=profile,
image=image,
label=prompt,
metadata={
"negative_prompt": negative_prompt,
"seed": seed,
"width": width,
"height": height,
"prior_guidance_scale": prior_guidance_scale,
"decoder_num_inference_steps": decoder_num_inference_steps,
"decoder_guidance_scale": decoder_guidance_scale,
"num_images_per_prompt": num_images_per_prompt,
},
)
yield decoder_output[0]
examples = [
"An astronaut riding a green horse",
"A mecha robot in a favela by Tarsila do Amaral",
"The sprirt of a Tamagotchi wandering in the city of Los Angeles",
"A delicious feijoada ramen dish"
]
with gr.Blocks() as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced options", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a Negative Prompt",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=1024,
maximum=MAX_IMAGE_SIZE,
step=512,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=1024,
maximum=MAX_IMAGE_SIZE,
step=512,
value=1024,
)
num_images_per_prompt = gr.Slider(
label="Number of Images",
minimum=1,
maximum=2,
step=1,
value=1,
)
with gr.Row():
prior_guidance_scale = gr.Slider(
label="Prior Guidance Scale",
minimum=0,
maximum=20,
step=0.1,
value=4.0,
)
prior_num_inference_steps = gr.Slider(
label="Prior Inference Steps",
minimum=10,
maximum=30,
step=1,
value=20,
)
decoder_guidance_scale = gr.Slider(
label="Decoder Guidance Scale",
minimum=0,
maximum=0,
step=0.1,
value=0.0,
)
decoder_num_inference_steps = gr.Slider(
label="Decoder Inference Steps",
minimum=4,
maximum=12,
step=1,
value=10,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=result,
fn=generate,
cache_examples=CACHE_EXAMPLES,
)
inputs = [
prompt,
negative_prompt,
seed,
width,
height,
prior_num_inference_steps,
# prior_timesteps,
prior_guidance_scale,
decoder_num_inference_steps,
# decoder_timesteps,
decoder_guidance_scale,
num_images_per_prompt,
]
gr.on(
triggers=[prompt.submit, negative_prompt.submit, run_button.click],
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate,
inputs=inputs,
outputs=result,
api_name="run",
)
with gr.Blocks(css="style.css") as demo_with_history:
with gr.Tab("App"):
demo.render()
with gr.Tab("Past generations"):
user_history.render()
if __name__ == "__main__":
demo_with_history.queue(max_size=20).launch() |