Spaces:
Runtime error
Runtime error
File size: 13,496 Bytes
97f85d2 bdc1819 97f85d2 bdc1819 97f85d2 bdc1819 97f85d2 bdc1819 97f85d2 bdc1819 97f85d2 bdc1819 97f85d2 bdc1819 97f85d2 bdc1819 97f85d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
from diffusers import StableDiffusionXLInpaintPipeline
from PIL import Image, ImageFilter
import gradio as gr
import numpy as np
import time
import math
import random
import imageio
import torch
max_64_bit_int = 2**63 - 1
device = "cuda" if torch.cuda.is_available() else "cpu"
floatType = torch.float16 if torch.cuda.is_available() else torch.float32
variant = "fp16" if torch.cuda.is_available() else None
pipe = StableDiffusionXLInpaintPipeline.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1", torch_dtype = floatType, variant = variant)
pipe = pipe.to(device)
def check(
source_img,
prompt,
uploaded_mask,
negative_prompt,
denoising_steps,
num_inference_steps,
guidance_scale,
image_guidance_scale,
strength,
randomize_seed,
seed,
debug_mode,
progress = gr.Progress()
):
if source_img is None:
raise gr.Error("Please provide an image.")
if prompt is None or prompt == "":
raise gr.Error("Please provide a prompt input.")
def inpaint(
source_img,
prompt,
uploaded_mask,
negative_prompt,
denoising_steps,
num_inference_steps,
guidance_scale,
image_guidance_scale,
strength,
randomize_seed,
seed,
debug_mode,
progress = gr.Progress()
):
check(
source_img,
prompt,
uploaded_mask,
negative_prompt,
denoising_steps,
num_inference_steps,
guidance_scale,
image_guidance_scale,
strength,
randomize_seed,
seed,
debug_mode
)
start = time.time()
progress(0, desc = "Preparing data...")
if negative_prompt is None:
negative_prompt = ""
if denoising_steps is None:
denoising_steps = 1000
if num_inference_steps is None:
num_inference_steps = 25
if guidance_scale is None:
guidance_scale = 7
if image_guidance_scale is None:
image_guidance_scale = 1.1
if strength is None:
strength = 0.99
if randomize_seed:
seed = random.randint(0, max_64_bit_int)
random.seed(seed)
#pipe = pipe.manual_seed(seed)
input_image = source_img["image"].convert("RGB")
original_height, original_width, original_channel = np.array(input_image).shape
output_width = original_width
output_height = original_height
if uploaded_mask is None:
mask_image = source_img["mask"].convert("RGB")
else:
mask_image = uploaded_mask.convert("RGB")
mask_image = mask_image.resize((original_width, original_height))
# Limited to 1 million pixels
if 1024 * 1024 < output_width * output_height:
factor = ((1024 * 1024) / (output_width * output_height))**0.5
process_width = math.floor(output_width * factor)
process_height = math.floor(output_height * factor)
limitation = " Due to technical limitation, the image have been downscaled and then upscaled.";
else:
process_width = output_width
process_height = output_height
limitation = "";
# Width and height must be multiple of 8
if (process_width % 8) != 0 or (process_height % 8) != 0:
if ((process_width - (process_width % 8) + 8) * (process_height - (process_height % 8) + 8)) <= (1024 * 1024):
process_width = process_width - (process_width % 8) + 8
process_height = process_height - (process_height % 8) + 8
elif (process_height % 8) <= (process_width % 8) and ((process_width - (process_width % 8) + 8) * process_height) <= (1024 * 1024):
process_width = process_width - (process_width % 8) + 8
process_height = process_height - (process_height % 8)
elif (process_width % 8) <= (process_height % 8) and (process_width * (process_height - (process_height % 8) + 8)) <= (1024 * 1024):
process_width = process_width - (process_width % 8)
process_height = process_height - (process_height % 8) + 8
else:
process_width = process_width - (process_width % 8)
process_height = process_height - (process_height % 8)
progress(None, desc = "Processing...")
output_image = pipe(
seeds = [seed],
width = process_width,
height = process_height,
prompt = prompt,
negative_prompt = negative_prompt,
image = input_image,
mask_image = mask_image,
num_inference_steps = num_inference_steps,
guidance_scale = guidance_scale,
image_guidance_scale = image_guidance_scale,
strength = strength,
denoising_steps = denoising_steps,
show_progress_bar = True
).images[0]
if limitation != "":
output_image = output_image.resize((output_width, output_height))
if debug_mode == False:
input_image = None
mask_image = None
end = time.time()
secondes = int(end - start)
minutes = secondes // 60
secondes = secondes - (minutes * 60)
hours = minutes // 60
minutes = minutes - (hours * 60)
return [
output_image,
"Start again to get a different result. The new image is " + str(output_width) + " pixels large and " + str(output_height) + " pixels high, so an image of " + f'{output_width * output_height:,}' + " pixels. The image have been generated in " + str(hours) + " h, " + str(minutes) + " min, " + str(secondes) + " sec." + limitation,
input_image,
mask_image
]
def toggle_debug(is_debug_mode):
if is_debug_mode:
return [gr.update(visible = True)] * 2
else:
return [gr.update(visible = False)] * 2
with gr.Blocks() as interface:
gr.Markdown(
"""
<p style="text-align: center;"><b><big><big><big>Inpaint</big></big></big></b></p>
<p style="text-align: center;">Modifies one detail of your image, at any resolution, freely, without account, without watermark, without installation, which can be downloaded</p>
<br/>
<br/>
🚀 Powered by <i>SDXL 1.0</i> artificial intellingence.
<br/>
🐌 Slow process... ~1 hour.<br>You can duplicate this space on a free account, it works on CPU and should also run on CUDA.<br/>
<a href='https://huggingface.co/spaces/multimodalart/stable-diffusion-inpainting?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14'></a>
<br/>
⚖️ You can use, modify and share the generated images but not for commercial uses.
"""
)
with gr.Column():
source_img = gr.Image(label = "Your image", source = "upload", tool = "sketch", type = "pil")
prompt = gr.Textbox(label = "Prompt", info = "Describe the subject, the background and the style of image; 77 token limit", placeholder = "Describe what you want to see in the entire image")
with gr.Accordion("Upload a mask", open = False):
uploaded_mask = gr.Image(label = "Already made mask (black pixels will be preserved, white pixels will be redrawn)", source = "upload", type = "pil")
with gr.Accordion("Advanced options", open = False):
negative_prompt = gr.Textbox(label = "Negative prompt", placeholder = "Describe what you do NOT want to see in the entire image", value = "Ugly, malformed, noise, blur, watermark")
denoising_steps = gr.Slider(minimum = 0, maximum = 1000, value = 1000, step = 1, label = "Denoising", info = "lower=irrelevant result, higher=relevant result")
num_inference_steps = gr.Slider(minimum = 10, maximum = 100, value = 25, step = 1, label = "Number of inference steps", info = "lower=faster, higher=image quality")
guidance_scale = gr.Slider(minimum = 1, maximum = 13, value = 7, step = 0.1, label = "Classifier-Free Guidance Scale", info = "lower=image quality, higher=follow the prompt")
image_guidance_scale = gr.Slider(minimum = 1, value = 1.1, step = 0.1, label = "Image Guidance Scale", info = "lower=image quality, higher=follow the image")
strength = gr.Number(value = 0.99, minimum = 0.01, maximum = 1.0, step = 0.01, label = "Strength", info = "lower=follow the original area, higher=redraw from scratch")
randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed (not working, always checked)", value = True, info = "If checked, result is always different")
seed = gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed (if not randomized)")
debug_mode = gr.Checkbox(label = "Debug mode", value = False, info = "Show intermediate results")
submit = gr.Button("Inpaint", variant = "primary")
inpainted_image = gr.Image(label = "Inpainted image")
information = gr.Label(label = "Information")
original_image = gr.Image(label = "Original image", visible = False)
mask_image = gr.Image(label = "Mask image", visible = False)
submit.click(toggle_debug, debug_mode, [
original_image,
mask_image
], queue = False, show_progress = False).then(check, inputs = [
source_img,
prompt,
uploaded_mask,
negative_prompt,
denoising_steps,
num_inference_steps,
guidance_scale,
image_guidance_scale,
strength,
randomize_seed,
seed,
debug_mode
], outputs = [], queue = False, show_progress = False).success(inpaint, inputs = [
source_img,
prompt,
uploaded_mask,
negative_prompt,
denoising_steps,
num_inference_steps,
guidance_scale,
image_guidance_scale,
strength,
randomize_seed,
seed,
debug_mode
], outputs = [
inpainted_image,
information,
original_image,
mask_image
], scroll_to_output = True)
gr.Examples(
inputs = [
source_img,
prompt,
uploaded_mask,
negative_prompt,
denoising_steps,
num_inference_steps,
guidance_scale,
image_guidance_scale,
strength,
randomize_seed,
seed,
debug_mode
],
outputs = [
inpainted_image,
information,
original_image,
mask_image
],
examples = [
[
"./Examples/Example1.png",
"A deer, in a forest landscape, ultrarealistic, realistic, photorealistic, 8k",
"./Examples/Mask1.webp",
"Painting, drawing, cartoon, ugly, malformed, noise, blur, watermark",
1000,
25,
7,
1.1,
0.99,
True,
42,
False
],
[
"./Examples/Example3.jpg",
"An angry old woman, ultrarealistic, realistic, photorealistic, 8k",
"./Examples/Mask3.gif",
"Painting, drawing, cartoon, ugly, malformed, noise, blur, watermark",
1000,
25,
7,
1.5,
0.99,
True,
42,
False
],
[
"./Examples/Example4.gif",
"A laptop, ultrarealistic, realistic, photorealistic, 8k",
"./Examples/Mask4.bmp",
"Painting, drawing, cartoon, ugly, malformed, noise, blur, watermark",
1000,
25,
7,
1.1,
0.99,
True,
42,
False
],
[
"./Examples/Example5.bmp",
"A sand castle, ultrarealistic, realistic, photorealistic, 8k",
"./Examples/Mask5.png",
"Painting, drawing, cartoon, ugly, malformed, noise, blur, watermark",
1000,
50,
7,
1.5,
0.5,
True,
42,
False
],
[
"./Examples/Example2.webp",
"A cat, ultrarealistic, realistic, photorealistic, 8k",
"./Examples/Mask2.png",
"Painting, drawing, cartoon, ugly, malformed, noise, blur, watermark",
1000,
25,
7,
1.1,
0.99,
True,
42,
False
],
],
cache_examples = False,
)
interface.queue().launch() |