File size: 13,496 Bytes
97f85d2
 
 
bdc1819
 
97f85d2
 
 
 
bdc1819
 
97f85d2
bdc1819
 
97f85d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdc1819
97f85d2
 
 
 
 
 
 
 
 
 
bdc1819
97f85d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdc1819
97f85d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdc1819
97f85d2
 
 
 
 
 
 
 
 
 
 
bdc1819
 
97f85d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
from diffusers import StableDiffusionXLInpaintPipeline
from PIL import Image, ImageFilter

import gradio as gr
import numpy as np
import time
import math
import random
import imageio
import torch

max_64_bit_int = 2**63 - 1

device = "cuda" if torch.cuda.is_available() else "cpu"
floatType = torch.float16 if torch.cuda.is_available() else torch.float32
variant = "fp16" if torch.cuda.is_available() else None
pipe = StableDiffusionXLInpaintPipeline.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1", torch_dtype = floatType, variant = variant)
pipe = pipe.to(device)

def check(
    source_img,
    prompt,
    uploaded_mask,
    negative_prompt,
    denoising_steps,
    num_inference_steps,
    guidance_scale,
    image_guidance_scale,
    strength,
    randomize_seed,
    seed,
    debug_mode,
    progress = gr.Progress()
):
    if source_img is None:
        raise gr.Error("Please provide an image.")

    if prompt is None or prompt == "":
        raise gr.Error("Please provide a prompt input.")

def inpaint(
    source_img,
    prompt,
    uploaded_mask,
    negative_prompt,
    denoising_steps,
    num_inference_steps,
    guidance_scale,
    image_guidance_scale,
    strength,
    randomize_seed,
    seed,
    debug_mode,
    progress = gr.Progress()
):
    check(
        source_img,
        prompt,
        uploaded_mask,
        negative_prompt,
        denoising_steps,
        num_inference_steps,
        guidance_scale,
        image_guidance_scale,
        strength,
        randomize_seed,
        seed,
        debug_mode
    )
    start = time.time()
    progress(0, desc = "Preparing data...")

    if negative_prompt is None:
        negative_prompt = ""

    if denoising_steps is None:
        denoising_steps = 1000

    if num_inference_steps is None:
        num_inference_steps = 25

    if guidance_scale is None:
        guidance_scale = 7

    if image_guidance_scale is None:
        image_guidance_scale = 1.1

    if strength is None:
        strength = 0.99

    if randomize_seed:
        seed = random.randint(0, max_64_bit_int)

    random.seed(seed)
    #pipe = pipe.manual_seed(seed)

    input_image = source_img["image"].convert("RGB")

    original_height, original_width, original_channel = np.array(input_image).shape
    output_width = original_width
    output_height = original_height

    if uploaded_mask is None:
        mask_image = source_img["mask"].convert("RGB")
    else:
        mask_image = uploaded_mask.convert("RGB")
        mask_image = mask_image.resize((original_width, original_height))

    # Limited to 1 million pixels
    if 1024 * 1024 < output_width * output_height:
        factor = ((1024 * 1024) / (output_width * output_height))**0.5
        process_width = math.floor(output_width * factor)
        process_height = math.floor(output_height * factor)

        limitation = " Due to technical limitation, the image have been downscaled and then upscaled.";
    else:
        process_width = output_width
        process_height = output_height

        limitation = "";

    # Width and height must be multiple of 8
    if (process_width % 8) != 0 or (process_height % 8) != 0:
        if ((process_width - (process_width % 8) + 8) * (process_height - (process_height % 8) + 8)) <= (1024 * 1024):
            process_width = process_width - (process_width % 8) + 8
            process_height = process_height - (process_height % 8) + 8
        elif (process_height % 8) <= (process_width % 8) and ((process_width - (process_width % 8) + 8) * process_height) <= (1024 * 1024):
            process_width = process_width - (process_width % 8) + 8
            process_height = process_height - (process_height % 8)
        elif (process_width % 8) <= (process_height % 8) and (process_width * (process_height - (process_height % 8) + 8)) <= (1024 * 1024):
            process_width = process_width - (process_width % 8)
            process_height = process_height - (process_height % 8) + 8
        else:
            process_width = process_width - (process_width % 8)
            process_height = process_height - (process_height % 8)

    progress(None, desc = "Processing...")
    output_image = pipe(
        seeds = [seed],
        width = process_width,
        height = process_height,
        prompt = prompt,
        negative_prompt = negative_prompt,
        image = input_image,
        mask_image = mask_image,
        num_inference_steps = num_inference_steps,
        guidance_scale = guidance_scale,
        image_guidance_scale = image_guidance_scale,
        strength = strength,
        denoising_steps = denoising_steps,
        show_progress_bar = True
    ).images[0]

    if limitation != "":
        output_image = output_image.resize((output_width, output_height))

    if debug_mode == False:
        input_image = None
        mask_image = None

    end = time.time()
    secondes = int(end - start)
    minutes = secondes // 60
    secondes = secondes - (minutes * 60)
    hours = minutes // 60
    minutes = minutes - (hours * 60)
    return [
        output_image,
        "Start again to get a different result. The new image is " + str(output_width) + " pixels large and " + str(output_height) + " pixels high, so an image of " + f'{output_width * output_height:,}' + " pixels. The image have been generated in " + str(hours) + " h, " + str(minutes) + " min, " + str(secondes) + " sec." + limitation,
        input_image,
        mask_image
    ]

def toggle_debug(is_debug_mode):
    if is_debug_mode:
        return [gr.update(visible = True)] * 2
    else:
        return [gr.update(visible = False)] * 2

with gr.Blocks() as interface:
    gr.Markdown(
        """
        <p style="text-align: center;"><b><big><big><big>Inpaint</big></big></big></b></p>
        <p style="text-align: center;">Modifies one detail of your image, at any resolution, freely, without account, without watermark, without installation, which can be downloaded</p>
        <br/>
        <br/>
        🚀 Powered by <i>SDXL 1.0</i> artificial intellingence.
        <br/>
        🐌 Slow process... ~1 hour.<br>You can duplicate this space on a free account, it works on CPU and should also run on CUDA.<br/>
        <a href='https://huggingface.co/spaces/multimodalart/stable-diffusion-inpainting?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14'></a>
        <br/>
        ⚖️ You can use, modify and share the generated images but not for commercial uses.

        """
    )
    with gr.Column():
        source_img = gr.Image(label = "Your image", source = "upload", tool = "sketch", type = "pil")
        prompt = gr.Textbox(label = "Prompt", info = "Describe the subject, the background and the style of image; 77 token limit", placeholder = "Describe what you want to see in the entire image")
        with gr.Accordion("Upload a mask", open = False):
             uploaded_mask = gr.Image(label = "Already made mask (black pixels will be preserved, white pixels will be redrawn)", source = "upload", type = "pil")
        with gr.Accordion("Advanced options", open = False):
             negative_prompt = gr.Textbox(label = "Negative prompt", placeholder = "Describe what you do NOT want to see in the entire image", value = "Ugly, malformed, noise, blur, watermark")
             denoising_steps = gr.Slider(minimum = 0, maximum = 1000, value = 1000, step = 1, label = "Denoising", info = "lower=irrelevant result, higher=relevant result")
             num_inference_steps = gr.Slider(minimum = 10, maximum = 100, value = 25, step = 1, label = "Number of inference steps", info = "lower=faster, higher=image quality")
             guidance_scale = gr.Slider(minimum = 1, maximum = 13, value = 7, step = 0.1, label = "Classifier-Free Guidance Scale", info = "lower=image quality, higher=follow the prompt")
             image_guidance_scale = gr.Slider(minimum = 1, value = 1.1, step = 0.1, label = "Image Guidance Scale", info = "lower=image quality, higher=follow the image")
             strength = gr.Number(value = 0.99, minimum = 0.01, maximum = 1.0, step = 0.01, label = "Strength", info = "lower=follow the original area, higher=redraw from scratch")
             randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed (not working, always checked)", value = True, info = "If checked, result is always different")
             seed = gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed (if not randomized)")
             debug_mode = gr.Checkbox(label = "Debug mode", value = False, info = "Show intermediate results")

        submit = gr.Button("Inpaint", variant = "primary")

        inpainted_image = gr.Image(label = "Inpainted image")
        information = gr.Label(label = "Information")
        original_image = gr.Image(label = "Original image", visible = False)
        mask_image = gr.Image(label = "Mask image", visible = False)

    submit.click(toggle_debug, debug_mode, [
        original_image,
        mask_image
    ], queue = False, show_progress = False).then(check, inputs = [
        source_img,
        prompt,
        uploaded_mask,
        negative_prompt,
        denoising_steps,
        num_inference_steps,
        guidance_scale,
        image_guidance_scale,
        strength,
        randomize_seed,
        seed,
        debug_mode
    ], outputs = [], queue = False, show_progress = False).success(inpaint, inputs = [
        source_img,
        prompt,
        uploaded_mask,
        negative_prompt,
        denoising_steps,
        num_inference_steps,
        guidance_scale,
        image_guidance_scale,
        strength,
        randomize_seed,
        seed,
        debug_mode
    ], outputs = [
        inpainted_image,
        information,
        original_image,
        mask_image
    ], scroll_to_output = True)

    gr.Examples(
	    inputs = [
            source_img,
            prompt,
            uploaded_mask,
            negative_prompt,
            denoising_steps,
            num_inference_steps,
            guidance_scale,
            image_guidance_scale,
            strength,
            randomize_seed,
            seed,
            debug_mode
        ],
	    outputs = [
            inpainted_image,
            information,
            original_image,
            mask_image
        ],
        examples = [
                [
                    "./Examples/Example1.png",
                    "A deer, in a forest landscape, ultrarealistic, realistic, photorealistic, 8k",
                    "./Examples/Mask1.webp",
                    "Painting, drawing, cartoon, ugly, malformed, noise, blur, watermark",
                    1000,
                    25,
                    7,
                    1.1,
                    0.99,
                    True,
                    42,
                    False
                ],
                [
                    "./Examples/Example3.jpg",
                    "An angry old woman, ultrarealistic, realistic, photorealistic, 8k",
                    "./Examples/Mask3.gif",
                    "Painting, drawing, cartoon, ugly, malformed, noise, blur, watermark",
                    1000,
                    25,
                    7,
                    1.5,
                    0.99,
                    True,
                    42,
                    False
                ],
                [
                    "./Examples/Example4.gif",
                    "A laptop, ultrarealistic, realistic, photorealistic, 8k",
                    "./Examples/Mask4.bmp",
                    "Painting, drawing, cartoon, ugly, malformed, noise, blur, watermark",
                    1000,
                    25,
                    7,
                    1.1,
                    0.99,
                    True,
                    42,
                    False
                ],
                [
                    "./Examples/Example5.bmp",
                    "A sand castle, ultrarealistic, realistic, photorealistic, 8k",
                    "./Examples/Mask5.png",
                    "Painting, drawing, cartoon, ugly, malformed, noise, blur, watermark",
                    1000,
                    50,
                    7,
                    1.5,
                    0.5,
                    True,
                    42,
                    False
                ],
                [
                    "./Examples/Example2.webp",
                    "A cat, ultrarealistic, realistic, photorealistic, 8k",
                    "./Examples/Mask2.png",
                    "Painting, drawing, cartoon, ugly, malformed, noise, blur, watermark",
                    1000,
                    25,
                    7,
                    1.1,
                    0.99,
                    True,
                    42,
                    False
                ],
            ],
        cache_examples = False,
    )

    interface.queue().launch()