stable-diffusion-inpainting / clipseg /evaluation_utils.py
apolinario's picture
upload clipseg
48fa639
from torch.functional import Tensor
from general_utils import load_model
from torch.utils.data import DataLoader
import torch
import numpy as np
def denorm(img):
np_input = False
if isinstance(img, np.ndarray):
img = torch.from_numpy(img)
np_input = True
mean = torch.Tensor([0.485, 0.456, 0.406])
std = torch.Tensor([0.229, 0.224, 0.225])
img_denorm = (img*std[:,None,None]) + mean[:,None,None]
if np_input:
img_denorm = np.clip(img_denorm.numpy(), 0, 1)
else:
img_denorm = torch.clamp(img_denorm, 0, 1)
return img_denorm
def norm(img):
mean = torch.Tensor([0.485, 0.456, 0.406])
std = torch.Tensor([0.229, 0.224, 0.225])
return (img - mean[:,None,None]) / std[:,None,None]
def fast_iou_curve(p, g):
g = g[p.sort().indices]
p = torch.sigmoid(p.sort().values)
scores = []
vals = np.linspace(0, 1, 50)
for q in vals:
n = int(len(g) * q)
valid = torch.where(p > q)[0]
if len(valid) > 0:
n = int(valid[0])
else:
n = len(g)
fn = g[:n].sum()
tn = n - fn
tp = g[n:].sum()
fp = len(g) - n - tp
iou = tp / (tp + fn + fp)
precision = tp / (tp + fp)
recall = tp / (tp + fn)
scores += [iou]
return vals, scores
def fast_rp_curve(p, g):
g = g[p.sort().indices]
p = torch.sigmoid(p.sort().values)
precisions, recalls = [], []
vals = np.linspace(p.min(), p.max(), 250)
for q in p[::100000]:
n = int(len(g) * q)
valid = torch.where(p > q)[0]
if len(valid) > 0:
n = int(valid[0])
else:
n = len(g)
fn = g[:n].sum()
tn = n - fn
tp = g[n:].sum()
fp = len(g) - n - tp
iou = tp / (tp + fn + fp)
precision = tp / (tp + fp)
recall = tp / (tp + fn)
precisions += [precision]
recalls += [recall]
return recalls, precisions
# Image processing
def img_preprocess(batch, blur=0, grayscale=False, center_context=None, rect=False, rect_color=(255,0,0), rect_width=2,
brightness=1.0, bg_fac=1, colorize=False, outline=False, image_size=224):
import cv2
rw = rect_width
out = []
for img, mask in zip(batch[1], batch[2]):
img = img.cpu() if isinstance(img, torch.Tensor) else torch.from_numpy(img)
mask = mask.cpu() if isinstance(mask, torch.Tensor) else torch.from_numpy(mask)
img *= brightness
img_bl = img
if blur > 0: # best 5
img_bl = torch.from_numpy(cv2.GaussianBlur(img.permute(1,2,0).numpy(), (15, 15), blur)).permute(2,0,1)
if grayscale:
img_bl = img_bl[1][None]
#img_inp = img_ratio*img*mask + (1-img_ratio)*img_bl
# img_inp = img_ratio*img*mask + (1-img_ratio)*img_bl * (1-mask)
img_inp = img*mask + (bg_fac) * img_bl * (1-mask)
if rect:
_, bbox = crop_mask(img, mask, context=0.1)
img_inp[:, bbox[2]: bbox[3], max(0, bbox[0]-rw):bbox[0]+rw] = torch.tensor(rect_color)[:,None,None]
img_inp[:, bbox[2]: bbox[3], max(0, bbox[1]-rw):bbox[1]+rw] = torch.tensor(rect_color)[:,None,None]
img_inp[:, max(0, bbox[2]-1): bbox[2]+rw, bbox[0]:bbox[1]] = torch.tensor(rect_color)[:,None,None]
img_inp[:, max(0, bbox[3]-1): bbox[3]+rw, bbox[0]:bbox[1]] = torch.tensor(rect_color)[:,None,None]
if center_context is not None:
img_inp = object_crop(img_inp, mask, context=center_context, image_size=image_size)
if colorize:
img_gray = denorm(img)
img_gray = cv2.cvtColor(img_gray.permute(1,2,0).numpy(), cv2.COLOR_RGB2GRAY)
img_gray = torch.stack([torch.from_numpy(img_gray)]*3)
img_inp = torch.tensor([1,0.2,0.2])[:,None,None] * img_gray * mask + bg_fac * img_gray * (1-mask)
img_inp = norm(img_inp)
if outline:
cont = cv2.findContours(mask.byte().numpy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
outline_img = np.zeros(mask.shape, dtype=np.uint8)
cv2.drawContours(outline_img, cont[0], -1, thickness=5, color=(255, 255, 255))
outline_img = torch.stack([torch.from_numpy(outline_img)]*3).float() / 255.
img_inp = torch.tensor([1,0,0])[:,None,None] * outline_img + denorm(img_inp) * (1- outline_img)
img_inp = norm(img_inp)
out += [img_inp]
return torch.stack(out)
def object_crop(img, mask, context=0.0, square=False, image_size=224):
img_crop, bbox = crop_mask(img, mask, context=context, square=square)
img_crop = pad_to_square(img_crop, channel_dim=0)
img_crop = torch.nn.functional.interpolate(img_crop.unsqueeze(0), (image_size, image_size)).squeeze(0)
return img_crop
def crop_mask(img, mask, context=0.0, square=False):
assert img.shape[1:] == mask.shape
bbox = [mask.max(0).values.argmax(), mask.size(0) - mask.max(0).values.flip(0).argmax()]
bbox += [mask.max(1).values.argmax(), mask.size(1) - mask.max(1).values.flip(0).argmax()]
bbox = [int(x) for x in bbox]
width, height = (bbox[3] - bbox[2]), (bbox[1] - bbox[0])
# square mask
if square:
bbox[0] = int(max(0, bbox[0] - context * height))
bbox[1] = int(min(mask.size(0), bbox[1] + context * height))
bbox[2] = int(max(0, bbox[2] - context * width))
bbox[3] = int(min(mask.size(1), bbox[3] + context * width))
width, height = (bbox[3] - bbox[2]), (bbox[1] - bbox[0])
if height > width:
bbox[2] = int(max(0, (bbox[2] - 0.5*height)))
bbox[3] = bbox[2] + height
else:
bbox[0] = int(max(0, (bbox[0] - 0.5*width)))
bbox[1] = bbox[0] + width
else:
bbox[0] = int(max(0, bbox[0] - context * height))
bbox[1] = int(min(mask.size(0), bbox[1] + context * height))
bbox[2] = int(max(0, bbox[2] - context * width))
bbox[3] = int(min(mask.size(1), bbox[3] + context * width))
width, height = (bbox[3] - bbox[2]), (bbox[1] - bbox[0])
img_crop = img[:, bbox[2]: bbox[3], bbox[0]: bbox[1]]
return img_crop, bbox
def pad_to_square(img, channel_dim=2, fill=0):
"""
add padding such that a squared image is returned """
from torchvision.transforms.functional import pad
if channel_dim == 2:
img = img.permute(2, 0, 1)
elif channel_dim == 0:
pass
else:
raise ValueError('invalid channel_dim')
h, w = img.shape[1:]
pady1 = pady2 = padx1 = padx2 = 0
if h > w:
padx1 = (h - w) // 2
padx2 = h - w - padx1
elif w > h:
pady1 = (w - h) // 2
pady2 = w - h - pady1
img_padded = pad(img, padding=(padx1, pady1, padx2, pady2), padding_mode='constant')
if channel_dim == 2:
img_padded = img_padded.permute(1, 2, 0)
return img_padded
# qualitative
def split_sentence(inp, limit=9):
t_new, current_len = [], 0
for k, t in enumerate(inp.split(' ')):
current_len += len(t) + 1
t_new += [t+' ']
# not last
if current_len > limit and k != len(inp.split(' ')) - 1:
current_len = 0
t_new += ['\n']
t_new = ''.join(t_new)
return t_new
from matplotlib import pyplot as plt
def plot(imgs, *preds, labels=None, scale=1, cmap=plt.cm.magma, aps=None, gt_labels=None, vmax=None):
row_off = 0 if labels is None else 1
_, ax = plt.subplots(len(imgs) + row_off, 1 + len(preds), figsize=(scale * float(1 + 2*len(preds)), scale * float(len(imgs)*2)))
[a.axis('off') for a in ax.flatten()]
if labels is not None:
for j in range(len(labels)):
t_new = split_sentence(labels[j], limit=6)
ax[0, 1+ j].text(0.5, 0.1, t_new, ha='center', fontsize=3+ 10*scale)
for i in range(len(imgs)):
ax[i + row_off,0].imshow(imgs[i])
for j in range(len(preds)):
img = preds[j][i][0].detach().cpu().numpy()
if gt_labels is not None and labels[j] == gt_labels[i]:
print(j, labels[j], gt_labels[i])
edgecolor = 'red'
if aps is not None:
ax[i + row_off, 1 + j].text(30, 70, f'AP: {aps[i]:.3f}', color='red', fontsize=8)
else:
edgecolor = 'k'
rect = plt.Rectangle([0,0], img.shape[0], img.shape[1], facecolor="none",
edgecolor=edgecolor, linewidth=3)
ax[i + row_off,1 + j].add_patch(rect)
if vmax is None:
this_vmax = 1
elif vmax == 'per_prompt':
this_vmax = max([preds[j][_i][0].max() for _i in range(len(imgs))])
elif vmax == 'per_image':
this_vmax = max([preds[_j][i][0].max() for _j in range(len(preds))])
ax[i + row_off,1 + j].imshow(img, vmin=0, vmax=this_vmax, cmap=cmap)
# ax[i,1 + j].imshow(preds[j][i][0].detach().cpu().numpy(), vmin=preds[j].min(), vmax=preds[j].max())
plt.tight_layout()
plt.subplots_adjust(wspace=0.05, hspace=0.05)