Spaces:
Runtime error
Runtime error
Fabrice-TIERCELIN
commited on
Delete clipseg/general_utils.py
Browse files- clipseg/general_utils.py +0 -272
clipseg/general_utils.py
DELETED
@@ -1,272 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import inspect
|
3 |
-
import torch
|
4 |
-
import os
|
5 |
-
import sys
|
6 |
-
import yaml
|
7 |
-
from shutil import copy, copytree
|
8 |
-
from os.path import join, dirname, realpath, expanduser, isfile, isdir, basename
|
9 |
-
|
10 |
-
|
11 |
-
class Logger(object):
|
12 |
-
|
13 |
-
def __getattr__(self, k):
|
14 |
-
return print
|
15 |
-
|
16 |
-
log = Logger()
|
17 |
-
|
18 |
-
def training_config_from_cli_args():
|
19 |
-
experiment_name = sys.argv[1]
|
20 |
-
experiment_id = int(sys.argv[2])
|
21 |
-
|
22 |
-
yaml_config = yaml.load(open(f'experiments/{experiment_name}'), Loader=yaml.SafeLoader)
|
23 |
-
|
24 |
-
config = yaml_config['configuration']
|
25 |
-
config = {**config, **yaml_config['individual_configurations'][experiment_id]}
|
26 |
-
config = AttributeDict(config)
|
27 |
-
return config
|
28 |
-
|
29 |
-
|
30 |
-
def score_config_from_cli_args():
|
31 |
-
experiment_name = sys.argv[1]
|
32 |
-
experiment_id = int(sys.argv[2])
|
33 |
-
|
34 |
-
|
35 |
-
yaml_config = yaml.load(open(f'experiments/{experiment_name}'), Loader=yaml.SafeLoader)
|
36 |
-
|
37 |
-
config = yaml_config['test_configuration_common']
|
38 |
-
|
39 |
-
if type(yaml_config['test_configuration']) == list:
|
40 |
-
test_id = int(sys.argv[3])
|
41 |
-
config = {**config, **yaml_config['test_configuration'][test_id]}
|
42 |
-
else:
|
43 |
-
config = {**config, **yaml_config['test_configuration']}
|
44 |
-
|
45 |
-
if 'test_configuration' in yaml_config['individual_configurations'][experiment_id]:
|
46 |
-
config = {**config, **yaml_config['individual_configurations'][experiment_id]['test_configuration']}
|
47 |
-
|
48 |
-
train_checkpoint_id = yaml_config['individual_configurations'][experiment_id]['name']
|
49 |
-
|
50 |
-
config = AttributeDict(config)
|
51 |
-
return config, train_checkpoint_id
|
52 |
-
|
53 |
-
|
54 |
-
def get_from_repository(local_name, repo_files, integrity_check=None, repo_dir='~/dataset_repository',
|
55 |
-
local_dir='~/datasets'):
|
56 |
-
""" copies files from repository to local folder.
|
57 |
-
|
58 |
-
repo_files: list of filenames or list of tuples [filename, target path]
|
59 |
-
|
60 |
-
e.g. get_from_repository('MyDataset', [['data/dataset1.tar', 'other/path/ds03.tar'])
|
61 |
-
will create a folder 'MyDataset' in local_dir, and extract the content of
|
62 |
-
'<repo_dir>/data/dataset1.tar' to <local_dir>/MyDataset/other/path.
|
63 |
-
"""
|
64 |
-
|
65 |
-
local_dir = realpath(join(expanduser(local_dir), local_name))
|
66 |
-
|
67 |
-
dataset_exists = True
|
68 |
-
|
69 |
-
# check if folder is available
|
70 |
-
if not isdir(local_dir):
|
71 |
-
dataset_exists = False
|
72 |
-
|
73 |
-
if integrity_check is not None:
|
74 |
-
try:
|
75 |
-
integrity_ok = integrity_check(local_dir)
|
76 |
-
except BaseException:
|
77 |
-
integrity_ok = False
|
78 |
-
|
79 |
-
if integrity_ok:
|
80 |
-
log.hint('Passed custom integrity check')
|
81 |
-
else:
|
82 |
-
log.hint('Custom integrity check failed')
|
83 |
-
|
84 |
-
dataset_exists = dataset_exists and integrity_ok
|
85 |
-
|
86 |
-
if not dataset_exists:
|
87 |
-
|
88 |
-
repo_dir = realpath(expanduser(repo_dir))
|
89 |
-
|
90 |
-
for i, filename in enumerate(repo_files):
|
91 |
-
|
92 |
-
if type(filename) == str:
|
93 |
-
origin, target = filename, filename
|
94 |
-
archive_target = join(local_dir, basename(origin))
|
95 |
-
extract_target = join(local_dir)
|
96 |
-
else:
|
97 |
-
origin, target = filename
|
98 |
-
archive_target = join(local_dir, dirname(target), basename(origin))
|
99 |
-
extract_target = join(local_dir, dirname(target))
|
100 |
-
|
101 |
-
archive_origin = join(repo_dir, origin)
|
102 |
-
|
103 |
-
log.hint(f'copy: {archive_origin} to {archive_target}')
|
104 |
-
|
105 |
-
# make sure the path exists
|
106 |
-
os.makedirs(dirname(archive_target), exist_ok=True)
|
107 |
-
|
108 |
-
if os.path.isfile(archive_target):
|
109 |
-
# only copy if size differs
|
110 |
-
if os.path.getsize(archive_target) != os.path.getsize(archive_origin):
|
111 |
-
log.hint(f'file exists but filesize differs: target {os.path.getsize(archive_target)} vs. origin {os.path.getsize(archive_origin)}')
|
112 |
-
copy(archive_origin, archive_target)
|
113 |
-
else:
|
114 |
-
copy(archive_origin, archive_target)
|
115 |
-
|
116 |
-
extract_archive(archive_target, extract_target, noarchive_ok=True)
|
117 |
-
|
118 |
-
# concurrent processes might have deleted the file
|
119 |
-
if os.path.isfile(archive_target):
|
120 |
-
os.remove(archive_target)
|
121 |
-
|
122 |
-
|
123 |
-
def extract_archive(filename, target_folder=None, noarchive_ok=False):
|
124 |
-
from subprocess import run, PIPE
|
125 |
-
|
126 |
-
if filename.endswith('.tgz') or filename.endswith('.tar'):
|
127 |
-
command = f'tar -xf {filename}'
|
128 |
-
command += f' -C {target_folder}' if target_folder is not None else ''
|
129 |
-
elif filename.endswith('.tar.gz'):
|
130 |
-
command = f'tar -xzf {filename}'
|
131 |
-
command += f' -C {target_folder}' if target_folder is not None else ''
|
132 |
-
elif filename.endswith('zip'):
|
133 |
-
command = f'unzip {filename}'
|
134 |
-
command += f' -d {target_folder}' if target_folder is not None else ''
|
135 |
-
else:
|
136 |
-
if noarchive_ok:
|
137 |
-
return
|
138 |
-
else:
|
139 |
-
raise ValueError(f'unsuppored file ending of {filename}')
|
140 |
-
|
141 |
-
log.hint(command)
|
142 |
-
result = run(command.split(), stdout=PIPE, stderr=PIPE)
|
143 |
-
if result.returncode != 0:
|
144 |
-
print(result.stdout, result.stderr)
|
145 |
-
|
146 |
-
|
147 |
-
class AttributeDict(dict):
|
148 |
-
"""
|
149 |
-
An extended dictionary that allows access to elements as atttributes and counts
|
150 |
-
these accesses. This way, we know if some attributes were never used.
|
151 |
-
"""
|
152 |
-
|
153 |
-
def __init__(self, *args, **kwargs):
|
154 |
-
from collections import Counter
|
155 |
-
super().__init__(*args, **kwargs)
|
156 |
-
self.__dict__['counter'] = Counter()
|
157 |
-
|
158 |
-
def __getitem__(self, k):
|
159 |
-
self.__dict__['counter'][k] += 1
|
160 |
-
return super().__getitem__(k)
|
161 |
-
|
162 |
-
def __getattr__(self, k):
|
163 |
-
self.__dict__['counter'][k] += 1
|
164 |
-
return super().get(k)
|
165 |
-
|
166 |
-
def __setattr__(self, k, v):
|
167 |
-
return super().__setitem__(k, v)
|
168 |
-
|
169 |
-
def __delattr__(self, k, v):
|
170 |
-
return super().__delitem__(k, v)
|
171 |
-
|
172 |
-
def unused_keys(self, exceptions=()):
|
173 |
-
return [k for k in super().keys() if self.__dict__['counter'][k] == 0 and k not in exceptions]
|
174 |
-
|
175 |
-
def assume_no_unused_keys(self, exceptions=()):
|
176 |
-
if len(self.unused_keys(exceptions=exceptions)) > 0:
|
177 |
-
log.warning('Unused keys:', self.unused_keys(exceptions=exceptions))
|
178 |
-
|
179 |
-
|
180 |
-
def get_attribute(name):
|
181 |
-
import importlib
|
182 |
-
|
183 |
-
if name is None:
|
184 |
-
raise ValueError('The provided attribute is None')
|
185 |
-
|
186 |
-
name_split = name.split('.')
|
187 |
-
mod = importlib.import_module('.'.join(name_split[:-1]))
|
188 |
-
return getattr(mod, name_split[-1])
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
def filter_args(input_args, default_args):
|
193 |
-
|
194 |
-
updated_args = {k: input_args[k] if k in input_args else v for k, v in default_args.items()}
|
195 |
-
used_args = {k: v for k, v in input_args.items() if k in default_args}
|
196 |
-
unused_args = {k: v for k, v in input_args.items() if k not in default_args}
|
197 |
-
|
198 |
-
return AttributeDict(updated_args), AttributeDict(used_args), AttributeDict(unused_args)
|
199 |
-
|
200 |
-
|
201 |
-
def load_model(checkpoint_id, weights_file=None, strict=True, model_args='from_config', with_config=False):
|
202 |
-
|
203 |
-
config = json.load(open(join('logs', checkpoint_id, 'config.json')))
|
204 |
-
|
205 |
-
if model_args != 'from_config' and type(model_args) != dict:
|
206 |
-
raise ValueError('model_args must either be "from_config" or a dictionary of values')
|
207 |
-
|
208 |
-
model_cls = get_attribute(config['model'])
|
209 |
-
|
210 |
-
# load model
|
211 |
-
if model_args == 'from_config':
|
212 |
-
_, model_args, _ = filter_args(config, inspect.signature(model_cls).parameters)
|
213 |
-
|
214 |
-
model = model_cls(**model_args)
|
215 |
-
|
216 |
-
if weights_file is None:
|
217 |
-
weights_file = realpath(join('logs', checkpoint_id, 'weights.pth'))
|
218 |
-
else:
|
219 |
-
weights_file = realpath(join('logs', checkpoint_id, weights_file))
|
220 |
-
|
221 |
-
if isfile(weights_file):
|
222 |
-
weights = torch.load(weights_file)
|
223 |
-
for _, w in weights.items():
|
224 |
-
assert not torch.any(torch.isnan(w)), 'weights contain NaNs'
|
225 |
-
model.load_state_dict(weights, strict=strict)
|
226 |
-
else:
|
227 |
-
raise FileNotFoundError(f'model checkpoint {weights_file} was not found')
|
228 |
-
|
229 |
-
if with_config:
|
230 |
-
return model, config
|
231 |
-
|
232 |
-
return model
|
233 |
-
|
234 |
-
|
235 |
-
class TrainingLogger(object):
|
236 |
-
|
237 |
-
def __init__(self, model, log_dir, config=None, *args):
|
238 |
-
super().__init__()
|
239 |
-
self.model = model
|
240 |
-
self.base_path = join(f'logs/{log_dir}') if log_dir is not None else None
|
241 |
-
|
242 |
-
os.makedirs('logs/', exist_ok=True)
|
243 |
-
os.makedirs(self.base_path, exist_ok=True)
|
244 |
-
|
245 |
-
if config is not None:
|
246 |
-
json.dump(config, open(join(self.base_path, 'config.json'), 'w'))
|
247 |
-
|
248 |
-
def iter(self, i, **kwargs):
|
249 |
-
if i % 100 == 0 and 'loss' in kwargs:
|
250 |
-
loss = kwargs['loss']
|
251 |
-
print(f'iteration {i}: loss {loss:.4f}')
|
252 |
-
|
253 |
-
def save_weights(self, only_trainable=False, weight_file='weights.pth'):
|
254 |
-
if self.model is None:
|
255 |
-
raise AttributeError('You need to provide a model reference when initializing TrainingTracker to save weights.')
|
256 |
-
|
257 |
-
weights_path = join(self.base_path, weight_file)
|
258 |
-
|
259 |
-
weight_dict = self.model.state_dict()
|
260 |
-
|
261 |
-
if only_trainable:
|
262 |
-
weight_dict = {n: weight_dict[n] for n, p in self.model.named_parameters() if p.requires_grad}
|
263 |
-
|
264 |
-
torch.save(weight_dict, weights_path)
|
265 |
-
log.info(f'Saved weights to {weights_path}')
|
266 |
-
|
267 |
-
def __enter__(self):
|
268 |
-
return self
|
269 |
-
|
270 |
-
def __exit__(self, type, value, traceback):
|
271 |
-
""" automatically stop processes if used in a context manager """
|
272 |
-
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|