Fabrice-TIERCELIN commited on
Commit
7933a16
·
verified ·
1 Parent(s): 6564422

Delete clipseg/general_utils.py

Browse files
Files changed (1) hide show
  1. clipseg/general_utils.py +0 -272
clipseg/general_utils.py DELETED
@@ -1,272 +0,0 @@
1
- import json
2
- import inspect
3
- import torch
4
- import os
5
- import sys
6
- import yaml
7
- from shutil import copy, copytree
8
- from os.path import join, dirname, realpath, expanduser, isfile, isdir, basename
9
-
10
-
11
- class Logger(object):
12
-
13
- def __getattr__(self, k):
14
- return print
15
-
16
- log = Logger()
17
-
18
- def training_config_from_cli_args():
19
- experiment_name = sys.argv[1]
20
- experiment_id = int(sys.argv[2])
21
-
22
- yaml_config = yaml.load(open(f'experiments/{experiment_name}'), Loader=yaml.SafeLoader)
23
-
24
- config = yaml_config['configuration']
25
- config = {**config, **yaml_config['individual_configurations'][experiment_id]}
26
- config = AttributeDict(config)
27
- return config
28
-
29
-
30
- def score_config_from_cli_args():
31
- experiment_name = sys.argv[1]
32
- experiment_id = int(sys.argv[2])
33
-
34
-
35
- yaml_config = yaml.load(open(f'experiments/{experiment_name}'), Loader=yaml.SafeLoader)
36
-
37
- config = yaml_config['test_configuration_common']
38
-
39
- if type(yaml_config['test_configuration']) == list:
40
- test_id = int(sys.argv[3])
41
- config = {**config, **yaml_config['test_configuration'][test_id]}
42
- else:
43
- config = {**config, **yaml_config['test_configuration']}
44
-
45
- if 'test_configuration' in yaml_config['individual_configurations'][experiment_id]:
46
- config = {**config, **yaml_config['individual_configurations'][experiment_id]['test_configuration']}
47
-
48
- train_checkpoint_id = yaml_config['individual_configurations'][experiment_id]['name']
49
-
50
- config = AttributeDict(config)
51
- return config, train_checkpoint_id
52
-
53
-
54
- def get_from_repository(local_name, repo_files, integrity_check=None, repo_dir='~/dataset_repository',
55
- local_dir='~/datasets'):
56
- """ copies files from repository to local folder.
57
-
58
- repo_files: list of filenames or list of tuples [filename, target path]
59
-
60
- e.g. get_from_repository('MyDataset', [['data/dataset1.tar', 'other/path/ds03.tar'])
61
- will create a folder 'MyDataset' in local_dir, and extract the content of
62
- '<repo_dir>/data/dataset1.tar' to <local_dir>/MyDataset/other/path.
63
- """
64
-
65
- local_dir = realpath(join(expanduser(local_dir), local_name))
66
-
67
- dataset_exists = True
68
-
69
- # check if folder is available
70
- if not isdir(local_dir):
71
- dataset_exists = False
72
-
73
- if integrity_check is not None:
74
- try:
75
- integrity_ok = integrity_check(local_dir)
76
- except BaseException:
77
- integrity_ok = False
78
-
79
- if integrity_ok:
80
- log.hint('Passed custom integrity check')
81
- else:
82
- log.hint('Custom integrity check failed')
83
-
84
- dataset_exists = dataset_exists and integrity_ok
85
-
86
- if not dataset_exists:
87
-
88
- repo_dir = realpath(expanduser(repo_dir))
89
-
90
- for i, filename in enumerate(repo_files):
91
-
92
- if type(filename) == str:
93
- origin, target = filename, filename
94
- archive_target = join(local_dir, basename(origin))
95
- extract_target = join(local_dir)
96
- else:
97
- origin, target = filename
98
- archive_target = join(local_dir, dirname(target), basename(origin))
99
- extract_target = join(local_dir, dirname(target))
100
-
101
- archive_origin = join(repo_dir, origin)
102
-
103
- log.hint(f'copy: {archive_origin} to {archive_target}')
104
-
105
- # make sure the path exists
106
- os.makedirs(dirname(archive_target), exist_ok=True)
107
-
108
- if os.path.isfile(archive_target):
109
- # only copy if size differs
110
- if os.path.getsize(archive_target) != os.path.getsize(archive_origin):
111
- log.hint(f'file exists but filesize differs: target {os.path.getsize(archive_target)} vs. origin {os.path.getsize(archive_origin)}')
112
- copy(archive_origin, archive_target)
113
- else:
114
- copy(archive_origin, archive_target)
115
-
116
- extract_archive(archive_target, extract_target, noarchive_ok=True)
117
-
118
- # concurrent processes might have deleted the file
119
- if os.path.isfile(archive_target):
120
- os.remove(archive_target)
121
-
122
-
123
- def extract_archive(filename, target_folder=None, noarchive_ok=False):
124
- from subprocess import run, PIPE
125
-
126
- if filename.endswith('.tgz') or filename.endswith('.tar'):
127
- command = f'tar -xf {filename}'
128
- command += f' -C {target_folder}' if target_folder is not None else ''
129
- elif filename.endswith('.tar.gz'):
130
- command = f'tar -xzf {filename}'
131
- command += f' -C {target_folder}' if target_folder is not None else ''
132
- elif filename.endswith('zip'):
133
- command = f'unzip {filename}'
134
- command += f' -d {target_folder}' if target_folder is not None else ''
135
- else:
136
- if noarchive_ok:
137
- return
138
- else:
139
- raise ValueError(f'unsuppored file ending of {filename}')
140
-
141
- log.hint(command)
142
- result = run(command.split(), stdout=PIPE, stderr=PIPE)
143
- if result.returncode != 0:
144
- print(result.stdout, result.stderr)
145
-
146
-
147
- class AttributeDict(dict):
148
- """
149
- An extended dictionary that allows access to elements as atttributes and counts
150
- these accesses. This way, we know if some attributes were never used.
151
- """
152
-
153
- def __init__(self, *args, **kwargs):
154
- from collections import Counter
155
- super().__init__(*args, **kwargs)
156
- self.__dict__['counter'] = Counter()
157
-
158
- def __getitem__(self, k):
159
- self.__dict__['counter'][k] += 1
160
- return super().__getitem__(k)
161
-
162
- def __getattr__(self, k):
163
- self.__dict__['counter'][k] += 1
164
- return super().get(k)
165
-
166
- def __setattr__(self, k, v):
167
- return super().__setitem__(k, v)
168
-
169
- def __delattr__(self, k, v):
170
- return super().__delitem__(k, v)
171
-
172
- def unused_keys(self, exceptions=()):
173
- return [k for k in super().keys() if self.__dict__['counter'][k] == 0 and k not in exceptions]
174
-
175
- def assume_no_unused_keys(self, exceptions=()):
176
- if len(self.unused_keys(exceptions=exceptions)) > 0:
177
- log.warning('Unused keys:', self.unused_keys(exceptions=exceptions))
178
-
179
-
180
- def get_attribute(name):
181
- import importlib
182
-
183
- if name is None:
184
- raise ValueError('The provided attribute is None')
185
-
186
- name_split = name.split('.')
187
- mod = importlib.import_module('.'.join(name_split[:-1]))
188
- return getattr(mod, name_split[-1])
189
-
190
-
191
-
192
- def filter_args(input_args, default_args):
193
-
194
- updated_args = {k: input_args[k] if k in input_args else v for k, v in default_args.items()}
195
- used_args = {k: v for k, v in input_args.items() if k in default_args}
196
- unused_args = {k: v for k, v in input_args.items() if k not in default_args}
197
-
198
- return AttributeDict(updated_args), AttributeDict(used_args), AttributeDict(unused_args)
199
-
200
-
201
- def load_model(checkpoint_id, weights_file=None, strict=True, model_args='from_config', with_config=False):
202
-
203
- config = json.load(open(join('logs', checkpoint_id, 'config.json')))
204
-
205
- if model_args != 'from_config' and type(model_args) != dict:
206
- raise ValueError('model_args must either be "from_config" or a dictionary of values')
207
-
208
- model_cls = get_attribute(config['model'])
209
-
210
- # load model
211
- if model_args == 'from_config':
212
- _, model_args, _ = filter_args(config, inspect.signature(model_cls).parameters)
213
-
214
- model = model_cls(**model_args)
215
-
216
- if weights_file is None:
217
- weights_file = realpath(join('logs', checkpoint_id, 'weights.pth'))
218
- else:
219
- weights_file = realpath(join('logs', checkpoint_id, weights_file))
220
-
221
- if isfile(weights_file):
222
- weights = torch.load(weights_file)
223
- for _, w in weights.items():
224
- assert not torch.any(torch.isnan(w)), 'weights contain NaNs'
225
- model.load_state_dict(weights, strict=strict)
226
- else:
227
- raise FileNotFoundError(f'model checkpoint {weights_file} was not found')
228
-
229
- if with_config:
230
- return model, config
231
-
232
- return model
233
-
234
-
235
- class TrainingLogger(object):
236
-
237
- def __init__(self, model, log_dir, config=None, *args):
238
- super().__init__()
239
- self.model = model
240
- self.base_path = join(f'logs/{log_dir}') if log_dir is not None else None
241
-
242
- os.makedirs('logs/', exist_ok=True)
243
- os.makedirs(self.base_path, exist_ok=True)
244
-
245
- if config is not None:
246
- json.dump(config, open(join(self.base_path, 'config.json'), 'w'))
247
-
248
- def iter(self, i, **kwargs):
249
- if i % 100 == 0 and 'loss' in kwargs:
250
- loss = kwargs['loss']
251
- print(f'iteration {i}: loss {loss:.4f}')
252
-
253
- def save_weights(self, only_trainable=False, weight_file='weights.pth'):
254
- if self.model is None:
255
- raise AttributeError('You need to provide a model reference when initializing TrainingTracker to save weights.')
256
-
257
- weights_path = join(self.base_path, weight_file)
258
-
259
- weight_dict = self.model.state_dict()
260
-
261
- if only_trainable:
262
- weight_dict = {n: weight_dict[n] for n, p in self.model.named_parameters() if p.requires_grad}
263
-
264
- torch.save(weight_dict, weights_path)
265
- log.info(f'Saved weights to {weights_path}')
266
-
267
- def __enter__(self):
268
- return self
269
-
270
- def __exit__(self, type, value, traceback):
271
- """ automatically stop processes if used in a context manager """
272
- pass