Fabrice-TIERCELIN commited on
Commit
b917128
·
verified ·
1 Parent(s): 8b48898

Delete clipseg/Quickstart.ipynb

Browse files
Files changed (1) hide show
  1. clipseg/Quickstart.ipynb +0 -107
clipseg/Quickstart.ipynb DELETED
@@ -1,107 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "metadata": {},
7
- "outputs": [],
8
- "source": [
9
- "import torch\n",
10
- "import requests\n",
11
- "\n",
12
- "! wget https://owncloud.gwdg.de/index.php/s/ioHbRzFx6th32hn/download -O weights.zip\n",
13
- "! unzip -d weights -j weights.zip\n",
14
- "from models.clipseg import CLIPDensePredT\n",
15
- "from PIL import Image\n",
16
- "from torchvision import transforms\n",
17
- "from matplotlib import pyplot as plt\n",
18
- "\n",
19
- "# load model\n",
20
- "model = CLIPDensePredT(version='ViT-B/16', reduce_dim=64)\n",
21
- "model.eval();\n",
22
- "\n",
23
- "# non-strict, because we only stored decoder weights (not CLIP weights)\n",
24
- "model.load_state_dict(torch.load('weights/rd64-uni.pth', map_location=torch.device('cpu')), strict=False);"
25
- ]
26
- },
27
- {
28
- "cell_type": "markdown",
29
- "metadata": {},
30
- "source": [
31
- "Load and normalize `example_image.jpg`. You can also load through an URL."
32
- ]
33
- },
34
- {
35
- "cell_type": "code",
36
- "execution_count": null,
37
- "metadata": {},
38
- "outputs": [],
39
- "source": [
40
- "# load and normalize image\n",
41
- "input_image = Image.open('example_image.jpg')\n",
42
- "\n",
43
- "# or load from URL...\n",
44
- "# image_url = 'https://farm5.staticflickr.com/4141/4856248695_03475782dc_z.jpg'\n",
45
- "# input_image = Image.open(requests.get(image_url, stream=True).raw)\n",
46
- "\n",
47
- "transform = transforms.Compose([\n",
48
- " transforms.ToTensor(),\n",
49
- " transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),\n",
50
- " transforms.Resize((352, 352)),\n",
51
- "])\n",
52
- "img = transform(input_image).unsqueeze(0)"
53
- ]
54
- },
55
- {
56
- "cell_type": "markdown",
57
- "metadata": {},
58
- "source": [
59
- "Predict and visualize (this might take a few seconds if running without GPU support)"
60
- ]
61
- },
62
- {
63
- "cell_type": "code",
64
- "execution_count": null,
65
- "metadata": {},
66
- "outputs": [],
67
- "source": [
68
- "prompts = ['a glass', 'something to fill', 'wood', 'a jar']\n",
69
- "\n",
70
- "# predict\n",
71
- "with torch.no_grad():\n",
72
- " preds = model(img.repeat(4,1,1,1), prompts)[0]\n",
73
- "\n",
74
- "# visualize prediction\n",
75
- "_, ax = plt.subplots(1, 5, figsize=(15, 4))\n",
76
- "[a.axis('off') for a in ax.flatten()]\n",
77
- "ax[0].imshow(input_image)\n",
78
- "[ax[i+1].imshow(torch.sigmoid(preds[i][0])) for i in range(4)];\n",
79
- "[ax[i+1].text(0, -15, prompts[i]) for i in range(4)];"
80
- ]
81
- }
82
- ],
83
- "metadata": {
84
- "interpreter": {
85
- "hash": "800ed241f7db2bd3aa6942aa3be6809cdb30ee6b0a9e773dfecfa9fef1f4c586"
86
- },
87
- "kernelspec": {
88
- "display_name": "Python 3",
89
- "language": "python",
90
- "name": "python3"
91
- },
92
- "language_info": {
93
- "codemirror_mode": {
94
- "name": "ipython",
95
- "version": 3
96
- },
97
- "file_extension": ".py",
98
- "mimetype": "text/x-python",
99
- "name": "python",
100
- "nbconvert_exporter": "python",
101
- "pygments_lexer": "ipython3",
102
- "version": "3.8.10"
103
- }
104
- },
105
- "nbformat": 4,
106
- "nbformat_minor": 4
107
- }