Spaces:
Runtime error
Runtime error
Fabrice-TIERCELIN
commited on
Delete clipseg/evaluation_utils.py
Browse files- clipseg/evaluation_utils.py +0 -292
clipseg/evaluation_utils.py
DELETED
@@ -1,292 +0,0 @@
|
|
1 |
-
from torch.functional import Tensor
|
2 |
-
from general_utils import load_model
|
3 |
-
from torch.utils.data import DataLoader
|
4 |
-
import torch
|
5 |
-
import numpy as np
|
6 |
-
|
7 |
-
def denorm(img):
|
8 |
-
|
9 |
-
np_input = False
|
10 |
-
if isinstance(img, np.ndarray):
|
11 |
-
img = torch.from_numpy(img)
|
12 |
-
np_input = True
|
13 |
-
|
14 |
-
mean = torch.Tensor([0.485, 0.456, 0.406])
|
15 |
-
std = torch.Tensor([0.229, 0.224, 0.225])
|
16 |
-
|
17 |
-
img_denorm = (img*std[:,None,None]) + mean[:,None,None]
|
18 |
-
|
19 |
-
if np_input:
|
20 |
-
img_denorm = np.clip(img_denorm.numpy(), 0, 1)
|
21 |
-
else:
|
22 |
-
img_denorm = torch.clamp(img_denorm, 0, 1)
|
23 |
-
|
24 |
-
return img_denorm
|
25 |
-
|
26 |
-
|
27 |
-
def norm(img):
|
28 |
-
mean = torch.Tensor([0.485, 0.456, 0.406])
|
29 |
-
std = torch.Tensor([0.229, 0.224, 0.225])
|
30 |
-
return (img - mean[:,None,None]) / std[:,None,None]
|
31 |
-
|
32 |
-
|
33 |
-
def fast_iou_curve(p, g):
|
34 |
-
|
35 |
-
g = g[p.sort().indices]
|
36 |
-
p = torch.sigmoid(p.sort().values)
|
37 |
-
|
38 |
-
scores = []
|
39 |
-
vals = np.linspace(0, 1, 50)
|
40 |
-
|
41 |
-
for q in vals:
|
42 |
-
|
43 |
-
n = int(len(g) * q)
|
44 |
-
|
45 |
-
valid = torch.where(p > q)[0]
|
46 |
-
if len(valid) > 0:
|
47 |
-
n = int(valid[0])
|
48 |
-
else:
|
49 |
-
n = len(g)
|
50 |
-
|
51 |
-
fn = g[:n].sum()
|
52 |
-
tn = n - fn
|
53 |
-
tp = g[n:].sum()
|
54 |
-
fp = len(g) - n - tp
|
55 |
-
|
56 |
-
iou = tp / (tp + fn + fp)
|
57 |
-
|
58 |
-
precision = tp / (tp + fp)
|
59 |
-
recall = tp / (tp + fn)
|
60 |
-
|
61 |
-
scores += [iou]
|
62 |
-
|
63 |
-
return vals, scores
|
64 |
-
|
65 |
-
|
66 |
-
def fast_rp_curve(p, g):
|
67 |
-
|
68 |
-
g = g[p.sort().indices]
|
69 |
-
p = torch.sigmoid(p.sort().values)
|
70 |
-
|
71 |
-
precisions, recalls = [], []
|
72 |
-
vals = np.linspace(p.min(), p.max(), 250)
|
73 |
-
|
74 |
-
for q in p[::100000]:
|
75 |
-
|
76 |
-
n = int(len(g) * q)
|
77 |
-
|
78 |
-
valid = torch.where(p > q)[0]
|
79 |
-
if len(valid) > 0:
|
80 |
-
n = int(valid[0])
|
81 |
-
else:
|
82 |
-
n = len(g)
|
83 |
-
|
84 |
-
fn = g[:n].sum()
|
85 |
-
tn = n - fn
|
86 |
-
tp = g[n:].sum()
|
87 |
-
fp = len(g) - n - tp
|
88 |
-
|
89 |
-
iou = tp / (tp + fn + fp)
|
90 |
-
|
91 |
-
precision = tp / (tp + fp)
|
92 |
-
recall = tp / (tp + fn)
|
93 |
-
|
94 |
-
precisions += [precision]
|
95 |
-
recalls += [recall]
|
96 |
-
|
97 |
-
return recalls, precisions
|
98 |
-
|
99 |
-
|
100 |
-
# Image processing
|
101 |
-
|
102 |
-
def img_preprocess(batch, blur=0, grayscale=False, center_context=None, rect=False, rect_color=(255,0,0), rect_width=2,
|
103 |
-
brightness=1.0, bg_fac=1, colorize=False, outline=False, image_size=224):
|
104 |
-
import cv2
|
105 |
-
|
106 |
-
rw = rect_width
|
107 |
-
|
108 |
-
out = []
|
109 |
-
for img, mask in zip(batch[1], batch[2]):
|
110 |
-
|
111 |
-
img = img.cpu() if isinstance(img, torch.Tensor) else torch.from_numpy(img)
|
112 |
-
mask = mask.cpu() if isinstance(mask, torch.Tensor) else torch.from_numpy(mask)
|
113 |
-
|
114 |
-
img *= brightness
|
115 |
-
img_bl = img
|
116 |
-
if blur > 0: # best 5
|
117 |
-
img_bl = torch.from_numpy(cv2.GaussianBlur(img.permute(1,2,0).numpy(), (15, 15), blur)).permute(2,0,1)
|
118 |
-
|
119 |
-
if grayscale:
|
120 |
-
img_bl = img_bl[1][None]
|
121 |
-
|
122 |
-
#img_inp = img_ratio*img*mask + (1-img_ratio)*img_bl
|
123 |
-
# img_inp = img_ratio*img*mask + (1-img_ratio)*img_bl * (1-mask)
|
124 |
-
img_inp = img*mask + (bg_fac) * img_bl * (1-mask)
|
125 |
-
|
126 |
-
if rect:
|
127 |
-
_, bbox = crop_mask(img, mask, context=0.1)
|
128 |
-
img_inp[:, bbox[2]: bbox[3], max(0, bbox[0]-rw):bbox[0]+rw] = torch.tensor(rect_color)[:,None,None]
|
129 |
-
img_inp[:, bbox[2]: bbox[3], max(0, bbox[1]-rw):bbox[1]+rw] = torch.tensor(rect_color)[:,None,None]
|
130 |
-
img_inp[:, max(0, bbox[2]-1): bbox[2]+rw, bbox[0]:bbox[1]] = torch.tensor(rect_color)[:,None,None]
|
131 |
-
img_inp[:, max(0, bbox[3]-1): bbox[3]+rw, bbox[0]:bbox[1]] = torch.tensor(rect_color)[:,None,None]
|
132 |
-
|
133 |
-
|
134 |
-
if center_context is not None:
|
135 |
-
img_inp = object_crop(img_inp, mask, context=center_context, image_size=image_size)
|
136 |
-
|
137 |
-
if colorize:
|
138 |
-
img_gray = denorm(img)
|
139 |
-
img_gray = cv2.cvtColor(img_gray.permute(1,2,0).numpy(), cv2.COLOR_RGB2GRAY)
|
140 |
-
img_gray = torch.stack([torch.from_numpy(img_gray)]*3)
|
141 |
-
img_inp = torch.tensor([1,0.2,0.2])[:,None,None] * img_gray * mask + bg_fac * img_gray * (1-mask)
|
142 |
-
img_inp = norm(img_inp)
|
143 |
-
|
144 |
-
if outline:
|
145 |
-
cont = cv2.findContours(mask.byte().numpy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
146 |
-
outline_img = np.zeros(mask.shape, dtype=np.uint8)
|
147 |
-
cv2.drawContours(outline_img, cont[0], -1, thickness=5, color=(255, 255, 255))
|
148 |
-
outline_img = torch.stack([torch.from_numpy(outline_img)]*3).float() / 255.
|
149 |
-
img_inp = torch.tensor([1,0,0])[:,None,None] * outline_img + denorm(img_inp) * (1- outline_img)
|
150 |
-
img_inp = norm(img_inp)
|
151 |
-
|
152 |
-
out += [img_inp]
|
153 |
-
|
154 |
-
return torch.stack(out)
|
155 |
-
|
156 |
-
|
157 |
-
def object_crop(img, mask, context=0.0, square=False, image_size=224):
|
158 |
-
img_crop, bbox = crop_mask(img, mask, context=context, square=square)
|
159 |
-
img_crop = pad_to_square(img_crop, channel_dim=0)
|
160 |
-
img_crop = torch.nn.functional.interpolate(img_crop.unsqueeze(0), (image_size, image_size)).squeeze(0)
|
161 |
-
return img_crop
|
162 |
-
|
163 |
-
|
164 |
-
def crop_mask(img, mask, context=0.0, square=False):
|
165 |
-
|
166 |
-
assert img.shape[1:] == mask.shape
|
167 |
-
|
168 |
-
bbox = [mask.max(0).values.argmax(), mask.size(0) - mask.max(0).values.flip(0).argmax()]
|
169 |
-
bbox += [mask.max(1).values.argmax(), mask.size(1) - mask.max(1).values.flip(0).argmax()]
|
170 |
-
bbox = [int(x) for x in bbox]
|
171 |
-
|
172 |
-
width, height = (bbox[3] - bbox[2]), (bbox[1] - bbox[0])
|
173 |
-
|
174 |
-
# square mask
|
175 |
-
if square:
|
176 |
-
bbox[0] = int(max(0, bbox[0] - context * height))
|
177 |
-
bbox[1] = int(min(mask.size(0), bbox[1] + context * height))
|
178 |
-
bbox[2] = int(max(0, bbox[2] - context * width))
|
179 |
-
bbox[3] = int(min(mask.size(1), bbox[3] + context * width))
|
180 |
-
|
181 |
-
width, height = (bbox[3] - bbox[2]), (bbox[1] - bbox[0])
|
182 |
-
if height > width:
|
183 |
-
bbox[2] = int(max(0, (bbox[2] - 0.5*height)))
|
184 |
-
bbox[3] = bbox[2] + height
|
185 |
-
else:
|
186 |
-
bbox[0] = int(max(0, (bbox[0] - 0.5*width)))
|
187 |
-
bbox[1] = bbox[0] + width
|
188 |
-
else:
|
189 |
-
bbox[0] = int(max(0, bbox[0] - context * height))
|
190 |
-
bbox[1] = int(min(mask.size(0), bbox[1] + context * height))
|
191 |
-
bbox[2] = int(max(0, bbox[2] - context * width))
|
192 |
-
bbox[3] = int(min(mask.size(1), bbox[3] + context * width))
|
193 |
-
|
194 |
-
width, height = (bbox[3] - bbox[2]), (bbox[1] - bbox[0])
|
195 |
-
img_crop = img[:, bbox[2]: bbox[3], bbox[0]: bbox[1]]
|
196 |
-
return img_crop, bbox
|
197 |
-
|
198 |
-
|
199 |
-
def pad_to_square(img, channel_dim=2, fill=0):
|
200 |
-
"""
|
201 |
-
|
202 |
-
|
203 |
-
add padding such that a squared image is returned """
|
204 |
-
|
205 |
-
from torchvision.transforms.functional import pad
|
206 |
-
|
207 |
-
if channel_dim == 2:
|
208 |
-
img = img.permute(2, 0, 1)
|
209 |
-
elif channel_dim == 0:
|
210 |
-
pass
|
211 |
-
else:
|
212 |
-
raise ValueError('invalid channel_dim')
|
213 |
-
|
214 |
-
h, w = img.shape[1:]
|
215 |
-
pady1 = pady2 = padx1 = padx2 = 0
|
216 |
-
|
217 |
-
if h > w:
|
218 |
-
padx1 = (h - w) // 2
|
219 |
-
padx2 = h - w - padx1
|
220 |
-
elif w > h:
|
221 |
-
pady1 = (w - h) // 2
|
222 |
-
pady2 = w - h - pady1
|
223 |
-
|
224 |
-
img_padded = pad(img, padding=(padx1, pady1, padx2, pady2), padding_mode='constant')
|
225 |
-
|
226 |
-
if channel_dim == 2:
|
227 |
-
img_padded = img_padded.permute(1, 2, 0)
|
228 |
-
|
229 |
-
return img_padded
|
230 |
-
|
231 |
-
|
232 |
-
# qualitative
|
233 |
-
|
234 |
-
def split_sentence(inp, limit=9):
|
235 |
-
t_new, current_len = [], 0
|
236 |
-
for k, t in enumerate(inp.split(' ')):
|
237 |
-
current_len += len(t) + 1
|
238 |
-
t_new += [t+' ']
|
239 |
-
# not last
|
240 |
-
if current_len > limit and k != len(inp.split(' ')) - 1:
|
241 |
-
current_len = 0
|
242 |
-
t_new += ['\n']
|
243 |
-
|
244 |
-
t_new = ''.join(t_new)
|
245 |
-
return t_new
|
246 |
-
|
247 |
-
|
248 |
-
from matplotlib import pyplot as plt
|
249 |
-
|
250 |
-
|
251 |
-
def plot(imgs, *preds, labels=None, scale=1, cmap=plt.cm.magma, aps=None, gt_labels=None, vmax=None):
|
252 |
-
|
253 |
-
row_off = 0 if labels is None else 1
|
254 |
-
_, ax = plt.subplots(len(imgs) + row_off, 1 + len(preds), figsize=(scale * float(1 + 2*len(preds)), scale * float(len(imgs)*2)))
|
255 |
-
[a.axis('off') for a in ax.flatten()]
|
256 |
-
|
257 |
-
if labels is not None:
|
258 |
-
for j in range(len(labels)):
|
259 |
-
t_new = split_sentence(labels[j], limit=6)
|
260 |
-
ax[0, 1+ j].text(0.5, 0.1, t_new, ha='center', fontsize=3+ 10*scale)
|
261 |
-
|
262 |
-
|
263 |
-
for i in range(len(imgs)):
|
264 |
-
ax[i + row_off,0].imshow(imgs[i])
|
265 |
-
for j in range(len(preds)):
|
266 |
-
img = preds[j][i][0].detach().cpu().numpy()
|
267 |
-
|
268 |
-
if gt_labels is not None and labels[j] == gt_labels[i]:
|
269 |
-
print(j, labels[j], gt_labels[i])
|
270 |
-
edgecolor = 'red'
|
271 |
-
if aps is not None:
|
272 |
-
ax[i + row_off, 1 + j].text(30, 70, f'AP: {aps[i]:.3f}', color='red', fontsize=8)
|
273 |
-
else:
|
274 |
-
edgecolor = 'k'
|
275 |
-
|
276 |
-
rect = plt.Rectangle([0,0], img.shape[0], img.shape[1], facecolor="none",
|
277 |
-
edgecolor=edgecolor, linewidth=3)
|
278 |
-
ax[i + row_off,1 + j].add_patch(rect)
|
279 |
-
|
280 |
-
if vmax is None:
|
281 |
-
this_vmax = 1
|
282 |
-
elif vmax == 'per_prompt':
|
283 |
-
this_vmax = max([preds[j][_i][0].max() for _i in range(len(imgs))])
|
284 |
-
elif vmax == 'per_image':
|
285 |
-
this_vmax = max([preds[_j][i][0].max() for _j in range(len(preds))])
|
286 |
-
|
287 |
-
ax[i + row_off,1 + j].imshow(img, vmin=0, vmax=this_vmax, cmap=cmap)
|
288 |
-
|
289 |
-
|
290 |
-
# ax[i,1 + j].imshow(preds[j][i][0].detach().cpu().numpy(), vmin=preds[j].min(), vmax=preds[j].max())
|
291 |
-
plt.tight_layout()
|
292 |
-
plt.subplots_adjust(wspace=0.05, hspace=0.05)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|