Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
90e5afe
1
Parent(s):
c1a4c61
Delete scripts
Browse files- scripts/.DS_Store +0 -0
- scripts/__init__.py +0 -0
- scripts/demo/__init__.py +0 -0
- scripts/demo/detect.py +0 -156
- scripts/demo/discretization.py +0 -59
- scripts/demo/sampling.py +0 -364
- scripts/demo/streamlit_helpers.py +0 -928
- scripts/demo/video_sampling.py +0 -200
- scripts/sampling/configs/svd.yaml +0 -146
- scripts/sampling/configs/svd_image_decoder.yaml +0 -129
- scripts/sampling/configs/svd_xt.yaml +0 -146
- scripts/sampling/configs/svd_xt_image_decoder.yaml +0 -129
- scripts/sampling/simple_video_sample.py +0 -278
- scripts/tests/attention.py +0 -319
- scripts/util/__init__.py +0 -0
- scripts/util/detection/__init__.py +0 -0
- scripts/util/detection/nsfw_and_watermark_dectection.py +0 -110
- scripts/util/detection/p_head_v1.npz +0 -3
- scripts/util/detection/w_head_v1.npz +0 -3
scripts/.DS_Store
DELETED
Binary file (6.15 kB)
|
|
scripts/__init__.py
DELETED
File without changes
|
scripts/demo/__init__.py
DELETED
File without changes
|
scripts/demo/detect.py
DELETED
@@ -1,156 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
|
3 |
-
import cv2
|
4 |
-
import numpy as np
|
5 |
-
|
6 |
-
try:
|
7 |
-
from imwatermark import WatermarkDecoder
|
8 |
-
except ImportError as e:
|
9 |
-
try:
|
10 |
-
# Assume some of the other dependencies such as torch are not fulfilled
|
11 |
-
# import file without loading unnecessary libraries.
|
12 |
-
import importlib.util
|
13 |
-
import sys
|
14 |
-
|
15 |
-
spec = importlib.util.find_spec("imwatermark.maxDct")
|
16 |
-
assert spec is not None
|
17 |
-
maxDct = importlib.util.module_from_spec(spec)
|
18 |
-
sys.modules["maxDct"] = maxDct
|
19 |
-
spec.loader.exec_module(maxDct)
|
20 |
-
|
21 |
-
class WatermarkDecoder(object):
|
22 |
-
"""A minimal version of
|
23 |
-
https://github.com/ShieldMnt/invisible-watermark/blob/main/imwatermark/watermark.py
|
24 |
-
to only reconstruct bits using dwtDct"""
|
25 |
-
|
26 |
-
def __init__(self, wm_type="bytes", length=0):
|
27 |
-
assert wm_type == "bits", "Only bits defined in minimal import"
|
28 |
-
self._wmType = wm_type
|
29 |
-
self._wmLen = length
|
30 |
-
|
31 |
-
def reconstruct(self, bits):
|
32 |
-
if len(bits) != self._wmLen:
|
33 |
-
raise RuntimeError("bits are not matched with watermark length")
|
34 |
-
|
35 |
-
return bits
|
36 |
-
|
37 |
-
def decode(self, cv2Image, method="dwtDct", **configs):
|
38 |
-
(r, c, channels) = cv2Image.shape
|
39 |
-
if r * c < 256 * 256:
|
40 |
-
raise RuntimeError("image too small, should be larger than 256x256")
|
41 |
-
|
42 |
-
bits = []
|
43 |
-
assert method == "dwtDct"
|
44 |
-
embed = maxDct.EmbedMaxDct(watermarks=[], wmLen=self._wmLen, **configs)
|
45 |
-
bits = embed.decode(cv2Image)
|
46 |
-
return self.reconstruct(bits)
|
47 |
-
|
48 |
-
except:
|
49 |
-
raise e
|
50 |
-
|
51 |
-
|
52 |
-
# A fixed 48-bit message that was choosen at random
|
53 |
-
# WATERMARK_MESSAGE = 0xB3EC907BB19E
|
54 |
-
WATERMARK_MESSAGE = 0b101100111110110010010000011110111011000110011110
|
55 |
-
# bin(x)[2:] gives bits of x as str, use int to convert them to 0/1
|
56 |
-
WATERMARK_BITS = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]]
|
57 |
-
MATCH_VALUES = [
|
58 |
-
[27, "No watermark detected"],
|
59 |
-
[33, "Partial watermark match. Cannot determine with certainty."],
|
60 |
-
[
|
61 |
-
35,
|
62 |
-
(
|
63 |
-
"Likely watermarked. In our test 0.02% of real images were "
|
64 |
-
'falsely detected as "Likely watermarked"'
|
65 |
-
),
|
66 |
-
],
|
67 |
-
[
|
68 |
-
49,
|
69 |
-
(
|
70 |
-
"Very likely watermarked. In our test no real images were "
|
71 |
-
'falsely detected as "Very likely watermarked"'
|
72 |
-
),
|
73 |
-
],
|
74 |
-
]
|
75 |
-
|
76 |
-
|
77 |
-
class GetWatermarkMatch:
|
78 |
-
def __init__(self, watermark):
|
79 |
-
self.watermark = watermark
|
80 |
-
self.num_bits = len(self.watermark)
|
81 |
-
self.decoder = WatermarkDecoder("bits", self.num_bits)
|
82 |
-
|
83 |
-
def __call__(self, x: np.ndarray) -> np.ndarray:
|
84 |
-
"""
|
85 |
-
Detects the number of matching bits the predefined watermark with one
|
86 |
-
or multiple images. Images should be in cv2 format, e.g. h x w x c BGR.
|
87 |
-
|
88 |
-
Args:
|
89 |
-
x: ([B], h w, c) in range [0, 255]
|
90 |
-
|
91 |
-
Returns:
|
92 |
-
number of matched bits ([B],)
|
93 |
-
"""
|
94 |
-
squeeze = len(x.shape) == 3
|
95 |
-
if squeeze:
|
96 |
-
x = x[None, ...]
|
97 |
-
|
98 |
-
bs = x.shape[0]
|
99 |
-
detected = np.empty((bs, self.num_bits), dtype=bool)
|
100 |
-
for k in range(bs):
|
101 |
-
detected[k] = self.decoder.decode(x[k], "dwtDct")
|
102 |
-
result = np.sum(detected == self.watermark, axis=-1)
|
103 |
-
if squeeze:
|
104 |
-
return result[0]
|
105 |
-
else:
|
106 |
-
return result
|
107 |
-
|
108 |
-
|
109 |
-
get_watermark_match = GetWatermarkMatch(WATERMARK_BITS)
|
110 |
-
|
111 |
-
|
112 |
-
if __name__ == "__main__":
|
113 |
-
parser = argparse.ArgumentParser()
|
114 |
-
parser.add_argument(
|
115 |
-
"filename",
|
116 |
-
nargs="+",
|
117 |
-
type=str,
|
118 |
-
help="Image files to check for watermarks",
|
119 |
-
)
|
120 |
-
opts = parser.parse_args()
|
121 |
-
|
122 |
-
print(
|
123 |
-
"""
|
124 |
-
This script tries to detect watermarked images. Please be aware of
|
125 |
-
the following:
|
126 |
-
- As the watermark is supposed to be invisible, there is the risk that
|
127 |
-
watermarked images may not be detected.
|
128 |
-
- To maximize the chance of detection make sure that the image has the same
|
129 |
-
dimensions as when the watermark was applied (most likely 1024x1024
|
130 |
-
or 512x512).
|
131 |
-
- Specific image manipulation may drastically decrease the chance that
|
132 |
-
watermarks can be detected.
|
133 |
-
- There is also the chance that an image has the characteristics of the
|
134 |
-
watermark by chance.
|
135 |
-
- The watermark script is public, anybody may watermark any images, and
|
136 |
-
could therefore claim it to be generated.
|
137 |
-
- All numbers below are based on a test using 10,000 images without any
|
138 |
-
modifications after applying the watermark.
|
139 |
-
"""
|
140 |
-
)
|
141 |
-
|
142 |
-
for fn in opts.filename:
|
143 |
-
image = cv2.imread(fn)
|
144 |
-
if image is None:
|
145 |
-
print(f"Couldn't read {fn}. Skipping")
|
146 |
-
continue
|
147 |
-
|
148 |
-
num_bits = get_watermark_match(image)
|
149 |
-
k = 0
|
150 |
-
while num_bits > MATCH_VALUES[k][0]:
|
151 |
-
k += 1
|
152 |
-
print(
|
153 |
-
f"{fn}: {MATCH_VALUES[k][1]}",
|
154 |
-
f"Bits that matched the watermark {num_bits} from {len(WATERMARK_BITS)}\n",
|
155 |
-
sep="\n\t",
|
156 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scripts/demo/discretization.py
DELETED
@@ -1,59 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
|
3 |
-
from sgm.modules.diffusionmodules.discretizer import Discretization
|
4 |
-
|
5 |
-
|
6 |
-
class Img2ImgDiscretizationWrapper:
|
7 |
-
"""
|
8 |
-
wraps a discretizer, and prunes the sigmas
|
9 |
-
params:
|
10 |
-
strength: float between 0.0 and 1.0. 1.0 means full sampling (all sigmas are returned)
|
11 |
-
"""
|
12 |
-
|
13 |
-
def __init__(self, discretization: Discretization, strength: float = 1.0):
|
14 |
-
self.discretization = discretization
|
15 |
-
self.strength = strength
|
16 |
-
assert 0.0 <= self.strength <= 1.0
|
17 |
-
|
18 |
-
def __call__(self, *args, **kwargs):
|
19 |
-
# sigmas start large first, and decrease then
|
20 |
-
sigmas = self.discretization(*args, **kwargs)
|
21 |
-
print(f"sigmas after discretization, before pruning img2img: ", sigmas)
|
22 |
-
sigmas = torch.flip(sigmas, (0,))
|
23 |
-
sigmas = sigmas[: max(int(self.strength * len(sigmas)), 1)]
|
24 |
-
print("prune index:", max(int(self.strength * len(sigmas)), 1))
|
25 |
-
sigmas = torch.flip(sigmas, (0,))
|
26 |
-
print(f"sigmas after pruning: ", sigmas)
|
27 |
-
return sigmas
|
28 |
-
|
29 |
-
|
30 |
-
class Txt2NoisyDiscretizationWrapper:
|
31 |
-
"""
|
32 |
-
wraps a discretizer, and prunes the sigmas
|
33 |
-
params:
|
34 |
-
strength: float between 0.0 and 1.0. 0.0 means full sampling (all sigmas are returned)
|
35 |
-
"""
|
36 |
-
|
37 |
-
def __init__(
|
38 |
-
self, discretization: Discretization, strength: float = 0.0, original_steps=None
|
39 |
-
):
|
40 |
-
self.discretization = discretization
|
41 |
-
self.strength = strength
|
42 |
-
self.original_steps = original_steps
|
43 |
-
assert 0.0 <= self.strength <= 1.0
|
44 |
-
|
45 |
-
def __call__(self, *args, **kwargs):
|
46 |
-
# sigmas start large first, and decrease then
|
47 |
-
sigmas = self.discretization(*args, **kwargs)
|
48 |
-
print(f"sigmas after discretization, before pruning img2img: ", sigmas)
|
49 |
-
sigmas = torch.flip(sigmas, (0,))
|
50 |
-
if self.original_steps is None:
|
51 |
-
steps = len(sigmas)
|
52 |
-
else:
|
53 |
-
steps = self.original_steps + 1
|
54 |
-
prune_index = max(min(int(self.strength * steps) - 1, steps - 1), 0)
|
55 |
-
sigmas = sigmas[prune_index:]
|
56 |
-
print("prune index:", prune_index)
|
57 |
-
sigmas = torch.flip(sigmas, (0,))
|
58 |
-
print(f"sigmas after pruning: ", sigmas)
|
59 |
-
return sigmas
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scripts/demo/sampling.py
DELETED
@@ -1,364 +0,0 @@
|
|
1 |
-
from pytorch_lightning import seed_everything
|
2 |
-
|
3 |
-
from scripts.demo.streamlit_helpers import *
|
4 |
-
|
5 |
-
SAVE_PATH = "outputs/demo/txt2img/"
|
6 |
-
|
7 |
-
SD_XL_BASE_RATIOS = {
|
8 |
-
"0.5": (704, 1408),
|
9 |
-
"0.52": (704, 1344),
|
10 |
-
"0.57": (768, 1344),
|
11 |
-
"0.6": (768, 1280),
|
12 |
-
"0.68": (832, 1216),
|
13 |
-
"0.72": (832, 1152),
|
14 |
-
"0.78": (896, 1152),
|
15 |
-
"0.82": (896, 1088),
|
16 |
-
"0.88": (960, 1088),
|
17 |
-
"0.94": (960, 1024),
|
18 |
-
"1.0": (1024, 1024),
|
19 |
-
"1.07": (1024, 960),
|
20 |
-
"1.13": (1088, 960),
|
21 |
-
"1.21": (1088, 896),
|
22 |
-
"1.29": (1152, 896),
|
23 |
-
"1.38": (1152, 832),
|
24 |
-
"1.46": (1216, 832),
|
25 |
-
"1.67": (1280, 768),
|
26 |
-
"1.75": (1344, 768),
|
27 |
-
"1.91": (1344, 704),
|
28 |
-
"2.0": (1408, 704),
|
29 |
-
"2.09": (1472, 704),
|
30 |
-
"2.4": (1536, 640),
|
31 |
-
"2.5": (1600, 640),
|
32 |
-
"2.89": (1664, 576),
|
33 |
-
"3.0": (1728, 576),
|
34 |
-
}
|
35 |
-
|
36 |
-
VERSION2SPECS = {
|
37 |
-
"SDXL-base-1.0": {
|
38 |
-
"H": 1024,
|
39 |
-
"W": 1024,
|
40 |
-
"C": 4,
|
41 |
-
"f": 8,
|
42 |
-
"is_legacy": False,
|
43 |
-
"config": "configs/inference/sd_xl_base.yaml",
|
44 |
-
"ckpt": "checkpoints/sd_xl_base_1.0.safetensors",
|
45 |
-
},
|
46 |
-
"SDXL-base-0.9": {
|
47 |
-
"H": 1024,
|
48 |
-
"W": 1024,
|
49 |
-
"C": 4,
|
50 |
-
"f": 8,
|
51 |
-
"is_legacy": False,
|
52 |
-
"config": "configs/inference/sd_xl_base.yaml",
|
53 |
-
"ckpt": "checkpoints/sd_xl_base_0.9.safetensors",
|
54 |
-
},
|
55 |
-
"SD-2.1": {
|
56 |
-
"H": 512,
|
57 |
-
"W": 512,
|
58 |
-
"C": 4,
|
59 |
-
"f": 8,
|
60 |
-
"is_legacy": True,
|
61 |
-
"config": "configs/inference/sd_2_1.yaml",
|
62 |
-
"ckpt": "checkpoints/v2-1_512-ema-pruned.safetensors",
|
63 |
-
},
|
64 |
-
"SD-2.1-768": {
|
65 |
-
"H": 768,
|
66 |
-
"W": 768,
|
67 |
-
"C": 4,
|
68 |
-
"f": 8,
|
69 |
-
"is_legacy": True,
|
70 |
-
"config": "configs/inference/sd_2_1_768.yaml",
|
71 |
-
"ckpt": "checkpoints/v2-1_768-ema-pruned.safetensors",
|
72 |
-
},
|
73 |
-
"SDXL-refiner-0.9": {
|
74 |
-
"H": 1024,
|
75 |
-
"W": 1024,
|
76 |
-
"C": 4,
|
77 |
-
"f": 8,
|
78 |
-
"is_legacy": True,
|
79 |
-
"config": "configs/inference/sd_xl_refiner.yaml",
|
80 |
-
"ckpt": "checkpoints/sd_xl_refiner_0.9.safetensors",
|
81 |
-
},
|
82 |
-
"SDXL-refiner-1.0": {
|
83 |
-
"H": 1024,
|
84 |
-
"W": 1024,
|
85 |
-
"C": 4,
|
86 |
-
"f": 8,
|
87 |
-
"is_legacy": True,
|
88 |
-
"config": "configs/inference/sd_xl_refiner.yaml",
|
89 |
-
"ckpt": "checkpoints/sd_xl_refiner_1.0.safetensors",
|
90 |
-
},
|
91 |
-
}
|
92 |
-
|
93 |
-
|
94 |
-
def load_img(display=True, key=None, device="cuda"):
|
95 |
-
image = get_interactive_image(key=key)
|
96 |
-
if image is None:
|
97 |
-
return None
|
98 |
-
if display:
|
99 |
-
st.image(image)
|
100 |
-
w, h = image.size
|
101 |
-
print(f"loaded input image of size ({w}, {h})")
|
102 |
-
width, height = map(
|
103 |
-
lambda x: x - x % 64, (w, h)
|
104 |
-
) # resize to integer multiple of 64
|
105 |
-
image = image.resize((width, height))
|
106 |
-
image = np.array(image.convert("RGB"))
|
107 |
-
image = image[None].transpose(0, 3, 1, 2)
|
108 |
-
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
|
109 |
-
return image.to(device)
|
110 |
-
|
111 |
-
|
112 |
-
def run_txt2img(
|
113 |
-
state,
|
114 |
-
version,
|
115 |
-
version_dict,
|
116 |
-
is_legacy=False,
|
117 |
-
return_latents=False,
|
118 |
-
filter=None,
|
119 |
-
stage2strength=None,
|
120 |
-
):
|
121 |
-
if version.startswith("SDXL-base"):
|
122 |
-
W, H = st.selectbox("Resolution:", list(SD_XL_BASE_RATIOS.values()), 10)
|
123 |
-
else:
|
124 |
-
H = st.number_input("H", value=version_dict["H"], min_value=64, max_value=2048)
|
125 |
-
W = st.number_input("W", value=version_dict["W"], min_value=64, max_value=2048)
|
126 |
-
C = version_dict["C"]
|
127 |
-
F = version_dict["f"]
|
128 |
-
|
129 |
-
init_dict = {
|
130 |
-
"orig_width": W,
|
131 |
-
"orig_height": H,
|
132 |
-
"target_width": W,
|
133 |
-
"target_height": H,
|
134 |
-
}
|
135 |
-
value_dict = init_embedder_options(
|
136 |
-
get_unique_embedder_keys_from_conditioner(state["model"].conditioner),
|
137 |
-
init_dict,
|
138 |
-
prompt=prompt,
|
139 |
-
negative_prompt=negative_prompt,
|
140 |
-
)
|
141 |
-
sampler, num_rows, num_cols = init_sampling(stage2strength=stage2strength)
|
142 |
-
num_samples = num_rows * num_cols
|
143 |
-
|
144 |
-
if st.button("Sample"):
|
145 |
-
st.write(f"**Model I:** {version}")
|
146 |
-
out = do_sample(
|
147 |
-
state["model"],
|
148 |
-
sampler,
|
149 |
-
value_dict,
|
150 |
-
num_samples,
|
151 |
-
H,
|
152 |
-
W,
|
153 |
-
C,
|
154 |
-
F,
|
155 |
-
force_uc_zero_embeddings=["txt"] if not is_legacy else [],
|
156 |
-
return_latents=return_latents,
|
157 |
-
filter=filter,
|
158 |
-
)
|
159 |
-
return out
|
160 |
-
|
161 |
-
|
162 |
-
def run_img2img(
|
163 |
-
state,
|
164 |
-
version_dict,
|
165 |
-
is_legacy=False,
|
166 |
-
return_latents=False,
|
167 |
-
filter=None,
|
168 |
-
stage2strength=None,
|
169 |
-
):
|
170 |
-
img = load_img()
|
171 |
-
if img is None:
|
172 |
-
return None
|
173 |
-
H, W = img.shape[2], img.shape[3]
|
174 |
-
|
175 |
-
init_dict = {
|
176 |
-
"orig_width": W,
|
177 |
-
"orig_height": H,
|
178 |
-
"target_width": W,
|
179 |
-
"target_height": H,
|
180 |
-
}
|
181 |
-
value_dict = init_embedder_options(
|
182 |
-
get_unique_embedder_keys_from_conditioner(state["model"].conditioner),
|
183 |
-
init_dict,
|
184 |
-
prompt=prompt,
|
185 |
-
negative_prompt=negative_prompt,
|
186 |
-
)
|
187 |
-
strength = st.number_input(
|
188 |
-
"**Img2Img Strength**", value=0.75, min_value=0.0, max_value=1.0
|
189 |
-
)
|
190 |
-
sampler, num_rows, num_cols = init_sampling(
|
191 |
-
img2img_strength=strength,
|
192 |
-
stage2strength=stage2strength,
|
193 |
-
)
|
194 |
-
num_samples = num_rows * num_cols
|
195 |
-
|
196 |
-
if st.button("Sample"):
|
197 |
-
out = do_img2img(
|
198 |
-
repeat(img, "1 ... -> n ...", n=num_samples),
|
199 |
-
state["model"],
|
200 |
-
sampler,
|
201 |
-
value_dict,
|
202 |
-
num_samples,
|
203 |
-
force_uc_zero_embeddings=["txt"] if not is_legacy else [],
|
204 |
-
return_latents=return_latents,
|
205 |
-
filter=filter,
|
206 |
-
)
|
207 |
-
return out
|
208 |
-
|
209 |
-
|
210 |
-
def apply_refiner(
|
211 |
-
input,
|
212 |
-
state,
|
213 |
-
sampler,
|
214 |
-
num_samples,
|
215 |
-
prompt,
|
216 |
-
negative_prompt,
|
217 |
-
filter=None,
|
218 |
-
finish_denoising=False,
|
219 |
-
):
|
220 |
-
init_dict = {
|
221 |
-
"orig_width": input.shape[3] * 8,
|
222 |
-
"orig_height": input.shape[2] * 8,
|
223 |
-
"target_width": input.shape[3] * 8,
|
224 |
-
"target_height": input.shape[2] * 8,
|
225 |
-
}
|
226 |
-
|
227 |
-
value_dict = init_dict
|
228 |
-
value_dict["prompt"] = prompt
|
229 |
-
value_dict["negative_prompt"] = negative_prompt
|
230 |
-
|
231 |
-
value_dict["crop_coords_top"] = 0
|
232 |
-
value_dict["crop_coords_left"] = 0
|
233 |
-
|
234 |
-
value_dict["aesthetic_score"] = 6.0
|
235 |
-
value_dict["negative_aesthetic_score"] = 2.5
|
236 |
-
|
237 |
-
st.warning(f"refiner input shape: {input.shape}")
|
238 |
-
samples = do_img2img(
|
239 |
-
input,
|
240 |
-
state["model"],
|
241 |
-
sampler,
|
242 |
-
value_dict,
|
243 |
-
num_samples,
|
244 |
-
skip_encode=True,
|
245 |
-
filter=filter,
|
246 |
-
add_noise=not finish_denoising,
|
247 |
-
)
|
248 |
-
|
249 |
-
return samples
|
250 |
-
|
251 |
-
|
252 |
-
if __name__ == "__main__":
|
253 |
-
st.title("Stable Diffusion")
|
254 |
-
version = st.selectbox("Model Version", list(VERSION2SPECS.keys()), 0)
|
255 |
-
version_dict = VERSION2SPECS[version]
|
256 |
-
if st.checkbox("Load Model"):
|
257 |
-
mode = st.radio("Mode", ("txt2img", "img2img"), 0)
|
258 |
-
else:
|
259 |
-
mode = "skip"
|
260 |
-
st.write("__________________________")
|
261 |
-
|
262 |
-
set_lowvram_mode(st.checkbox("Low vram mode", True))
|
263 |
-
|
264 |
-
if version.startswith("SDXL-base"):
|
265 |
-
add_pipeline = st.checkbox("Load SDXL-refiner?", False)
|
266 |
-
st.write("__________________________")
|
267 |
-
else:
|
268 |
-
add_pipeline = False
|
269 |
-
|
270 |
-
seed = st.sidebar.number_input("seed", value=42, min_value=0, max_value=int(1e9))
|
271 |
-
seed_everything(seed)
|
272 |
-
|
273 |
-
save_locally, save_path = init_save_locally(os.path.join(SAVE_PATH, version))
|
274 |
-
|
275 |
-
if mode != "skip":
|
276 |
-
state = init_st(version_dict, load_filter=True)
|
277 |
-
if state["msg"]:
|
278 |
-
st.info(state["msg"])
|
279 |
-
model = state["model"]
|
280 |
-
|
281 |
-
is_legacy = version_dict["is_legacy"]
|
282 |
-
|
283 |
-
prompt = st.text_input(
|
284 |
-
"prompt",
|
285 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
286 |
-
)
|
287 |
-
if is_legacy:
|
288 |
-
negative_prompt = st.text_input("negative prompt", "")
|
289 |
-
else:
|
290 |
-
negative_prompt = "" # which is unused
|
291 |
-
|
292 |
-
stage2strength = None
|
293 |
-
finish_denoising = False
|
294 |
-
|
295 |
-
if add_pipeline:
|
296 |
-
st.write("__________________________")
|
297 |
-
version2 = st.selectbox("Refiner:", ["SDXL-refiner-1.0", "SDXL-refiner-0.9"])
|
298 |
-
st.warning(
|
299 |
-
f"Running with {version2} as the second stage model. Make sure to provide (V)RAM :) "
|
300 |
-
)
|
301 |
-
st.write("**Refiner Options:**")
|
302 |
-
|
303 |
-
version_dict2 = VERSION2SPECS[version2]
|
304 |
-
state2 = init_st(version_dict2, load_filter=False)
|
305 |
-
st.info(state2["msg"])
|
306 |
-
|
307 |
-
stage2strength = st.number_input(
|
308 |
-
"**Refinement strength**", value=0.15, min_value=0.0, max_value=1.0
|
309 |
-
)
|
310 |
-
|
311 |
-
sampler2, *_ = init_sampling(
|
312 |
-
key=2,
|
313 |
-
img2img_strength=stage2strength,
|
314 |
-
specify_num_samples=False,
|
315 |
-
)
|
316 |
-
st.write("__________________________")
|
317 |
-
finish_denoising = st.checkbox("Finish denoising with refiner.", True)
|
318 |
-
if not finish_denoising:
|
319 |
-
stage2strength = None
|
320 |
-
|
321 |
-
if mode == "txt2img":
|
322 |
-
out = run_txt2img(
|
323 |
-
state,
|
324 |
-
version,
|
325 |
-
version_dict,
|
326 |
-
is_legacy=is_legacy,
|
327 |
-
return_latents=add_pipeline,
|
328 |
-
filter=state.get("filter"),
|
329 |
-
stage2strength=stage2strength,
|
330 |
-
)
|
331 |
-
elif mode == "img2img":
|
332 |
-
out = run_img2img(
|
333 |
-
state,
|
334 |
-
version_dict,
|
335 |
-
is_legacy=is_legacy,
|
336 |
-
return_latents=add_pipeline,
|
337 |
-
filter=state.get("filter"),
|
338 |
-
stage2strength=stage2strength,
|
339 |
-
)
|
340 |
-
elif mode == "skip":
|
341 |
-
out = None
|
342 |
-
else:
|
343 |
-
raise ValueError(f"unknown mode {mode}")
|
344 |
-
if isinstance(out, (tuple, list)):
|
345 |
-
samples, samples_z = out
|
346 |
-
else:
|
347 |
-
samples = out
|
348 |
-
samples_z = None
|
349 |
-
|
350 |
-
if add_pipeline and samples_z is not None:
|
351 |
-
st.write("**Running Refinement Stage**")
|
352 |
-
samples = apply_refiner(
|
353 |
-
samples_z,
|
354 |
-
state2,
|
355 |
-
sampler2,
|
356 |
-
samples_z.shape[0],
|
357 |
-
prompt=prompt,
|
358 |
-
negative_prompt=negative_prompt if is_legacy else "",
|
359 |
-
filter=state.get("filter"),
|
360 |
-
finish_denoising=finish_denoising,
|
361 |
-
)
|
362 |
-
|
363 |
-
if save_locally and samples is not None:
|
364 |
-
perform_save_locally(save_path, samples)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scripts/demo/streamlit_helpers.py
DELETED
@@ -1,928 +0,0 @@
|
|
1 |
-
import copy
|
2 |
-
import math
|
3 |
-
import os
|
4 |
-
from glob import glob
|
5 |
-
from typing import Dict, List, Optional, Tuple, Union
|
6 |
-
|
7 |
-
import cv2
|
8 |
-
import numpy as np
|
9 |
-
import streamlit as st
|
10 |
-
import torch
|
11 |
-
import torch.nn as nn
|
12 |
-
import torchvision.transforms as TT
|
13 |
-
from einops import rearrange, repeat
|
14 |
-
from imwatermark import WatermarkEncoder
|
15 |
-
from omegaconf import ListConfig, OmegaConf
|
16 |
-
from PIL import Image
|
17 |
-
from safetensors.torch import load_file as load_safetensors
|
18 |
-
from torch import autocast
|
19 |
-
from torchvision import transforms
|
20 |
-
from torchvision.utils import make_grid, save_image
|
21 |
-
|
22 |
-
from scripts.demo.discretization import (Img2ImgDiscretizationWrapper,
|
23 |
-
Txt2NoisyDiscretizationWrapper)
|
24 |
-
from scripts.util.detection.nsfw_and_watermark_dectection import \
|
25 |
-
DeepFloydDataFiltering
|
26 |
-
from sgm.inference.helpers import embed_watermark
|
27 |
-
from sgm.modules.diffusionmodules.guiders import (LinearPredictionGuider,
|
28 |
-
VanillaCFG)
|
29 |
-
from sgm.modules.diffusionmodules.sampling import (DPMPP2MSampler,
|
30 |
-
DPMPP2SAncestralSampler,
|
31 |
-
EulerAncestralSampler,
|
32 |
-
EulerEDMSampler,
|
33 |
-
HeunEDMSampler,
|
34 |
-
LinearMultistepSampler)
|
35 |
-
from sgm.util import append_dims, default, instantiate_from_config
|
36 |
-
|
37 |
-
|
38 |
-
@st.cache_resource()
|
39 |
-
def init_st(version_dict, load_ckpt=True, load_filter=True):
|
40 |
-
state = dict()
|
41 |
-
if not "model" in state:
|
42 |
-
config = version_dict["config"]
|
43 |
-
ckpt = version_dict["ckpt"]
|
44 |
-
|
45 |
-
config = OmegaConf.load(config)
|
46 |
-
model, msg = load_model_from_config(config, ckpt if load_ckpt else None)
|
47 |
-
|
48 |
-
state["msg"] = msg
|
49 |
-
state["model"] = model
|
50 |
-
state["ckpt"] = ckpt if load_ckpt else None
|
51 |
-
state["config"] = config
|
52 |
-
if load_filter:
|
53 |
-
state["filter"] = DeepFloydDataFiltering(verbose=False)
|
54 |
-
return state
|
55 |
-
|
56 |
-
|
57 |
-
def load_model(model):
|
58 |
-
model.cuda()
|
59 |
-
|
60 |
-
|
61 |
-
lowvram_mode = False
|
62 |
-
|
63 |
-
|
64 |
-
def set_lowvram_mode(mode):
|
65 |
-
global lowvram_mode
|
66 |
-
lowvram_mode = mode
|
67 |
-
|
68 |
-
|
69 |
-
def initial_model_load(model):
|
70 |
-
global lowvram_mode
|
71 |
-
if lowvram_mode:
|
72 |
-
model.model.half()
|
73 |
-
else:
|
74 |
-
model.cuda()
|
75 |
-
return model
|
76 |
-
|
77 |
-
|
78 |
-
def unload_model(model):
|
79 |
-
global lowvram_mode
|
80 |
-
if lowvram_mode:
|
81 |
-
model.cpu()
|
82 |
-
torch.cuda.empty_cache()
|
83 |
-
|
84 |
-
|
85 |
-
def load_model_from_config(config, ckpt=None, verbose=True):
|
86 |
-
model = instantiate_from_config(config.model)
|
87 |
-
|
88 |
-
if ckpt is not None:
|
89 |
-
print(f"Loading model from {ckpt}")
|
90 |
-
if ckpt.endswith("ckpt"):
|
91 |
-
pl_sd = torch.load(ckpt, map_location="cpu")
|
92 |
-
if "global_step" in pl_sd:
|
93 |
-
global_step = pl_sd["global_step"]
|
94 |
-
st.info(f"loaded ckpt from global step {global_step}")
|
95 |
-
print(f"Global Step: {pl_sd['global_step']}")
|
96 |
-
sd = pl_sd["state_dict"]
|
97 |
-
elif ckpt.endswith("safetensors"):
|
98 |
-
sd = load_safetensors(ckpt)
|
99 |
-
else:
|
100 |
-
raise NotImplementedError
|
101 |
-
|
102 |
-
msg = None
|
103 |
-
|
104 |
-
m, u = model.load_state_dict(sd, strict=False)
|
105 |
-
|
106 |
-
if len(m) > 0 and verbose:
|
107 |
-
print("missing keys:")
|
108 |
-
print(m)
|
109 |
-
if len(u) > 0 and verbose:
|
110 |
-
print("unexpected keys:")
|
111 |
-
print(u)
|
112 |
-
else:
|
113 |
-
msg = None
|
114 |
-
|
115 |
-
model = initial_model_load(model)
|
116 |
-
model.eval()
|
117 |
-
return model, msg
|
118 |
-
|
119 |
-
|
120 |
-
def get_unique_embedder_keys_from_conditioner(conditioner):
|
121 |
-
return list(set([x.input_key for x in conditioner.embedders]))
|
122 |
-
|
123 |
-
|
124 |
-
def init_embedder_options(keys, init_dict, prompt=None, negative_prompt=None):
|
125 |
-
# Hardcoded demo settings; might undergo some changes in the future
|
126 |
-
|
127 |
-
value_dict = {}
|
128 |
-
for key in keys:
|
129 |
-
if key == "txt":
|
130 |
-
if prompt is None:
|
131 |
-
prompt = "A professional photograph of an astronaut riding a pig"
|
132 |
-
if negative_prompt is None:
|
133 |
-
negative_prompt = ""
|
134 |
-
|
135 |
-
prompt = st.text_input("Prompt", prompt)
|
136 |
-
negative_prompt = st.text_input("Negative prompt", negative_prompt)
|
137 |
-
|
138 |
-
value_dict["prompt"] = prompt
|
139 |
-
value_dict["negative_prompt"] = negative_prompt
|
140 |
-
|
141 |
-
if key == "original_size_as_tuple":
|
142 |
-
orig_width = st.number_input(
|
143 |
-
"orig_width",
|
144 |
-
value=init_dict["orig_width"],
|
145 |
-
min_value=16,
|
146 |
-
)
|
147 |
-
orig_height = st.number_input(
|
148 |
-
"orig_height",
|
149 |
-
value=init_dict["orig_height"],
|
150 |
-
min_value=16,
|
151 |
-
)
|
152 |
-
|
153 |
-
value_dict["orig_width"] = orig_width
|
154 |
-
value_dict["orig_height"] = orig_height
|
155 |
-
|
156 |
-
if key == "crop_coords_top_left":
|
157 |
-
crop_coord_top = st.number_input("crop_coords_top", value=0, min_value=0)
|
158 |
-
crop_coord_left = st.number_input("crop_coords_left", value=0, min_value=0)
|
159 |
-
|
160 |
-
value_dict["crop_coords_top"] = crop_coord_top
|
161 |
-
value_dict["crop_coords_left"] = crop_coord_left
|
162 |
-
|
163 |
-
if key == "aesthetic_score":
|
164 |
-
value_dict["aesthetic_score"] = 6.0
|
165 |
-
value_dict["negative_aesthetic_score"] = 2.5
|
166 |
-
|
167 |
-
if key == "target_size_as_tuple":
|
168 |
-
value_dict["target_width"] = init_dict["target_width"]
|
169 |
-
value_dict["target_height"] = init_dict["target_height"]
|
170 |
-
|
171 |
-
if key in ["fps_id", "fps"]:
|
172 |
-
fps = st.number_input("fps", value=6, min_value=1)
|
173 |
-
|
174 |
-
value_dict["fps"] = fps
|
175 |
-
value_dict["fps_id"] = fps - 1
|
176 |
-
|
177 |
-
if key == "motion_bucket_id":
|
178 |
-
mb_id = st.number_input("motion bucket id", 0, 511, value=127)
|
179 |
-
value_dict["motion_bucket_id"] = mb_id
|
180 |
-
|
181 |
-
if key == "pool_image":
|
182 |
-
st.text("Image for pool conditioning")
|
183 |
-
image = load_img(
|
184 |
-
key="pool_image_input",
|
185 |
-
size=224,
|
186 |
-
center_crop=True,
|
187 |
-
)
|
188 |
-
if image is None:
|
189 |
-
st.info("Need an image here")
|
190 |
-
image = torch.zeros(1, 3, 224, 224)
|
191 |
-
value_dict["pool_image"] = image
|
192 |
-
|
193 |
-
return value_dict
|
194 |
-
|
195 |
-
|
196 |
-
def perform_save_locally(save_path, samples):
|
197 |
-
os.makedirs(os.path.join(save_path), exist_ok=True)
|
198 |
-
base_count = len(os.listdir(os.path.join(save_path)))
|
199 |
-
samples = embed_watermark(samples)
|
200 |
-
for sample in samples:
|
201 |
-
sample = 255.0 * rearrange(sample.cpu().numpy(), "c h w -> h w c")
|
202 |
-
Image.fromarray(sample.astype(np.uint8)).save(
|
203 |
-
os.path.join(save_path, f"{base_count:09}.png")
|
204 |
-
)
|
205 |
-
base_count += 1
|
206 |
-
|
207 |
-
|
208 |
-
def init_save_locally(_dir, init_value: bool = False):
|
209 |
-
save_locally = st.sidebar.checkbox("Save images locally", value=init_value)
|
210 |
-
if save_locally:
|
211 |
-
save_path = st.text_input("Save path", value=os.path.join(_dir, "samples"))
|
212 |
-
else:
|
213 |
-
save_path = None
|
214 |
-
|
215 |
-
return save_locally, save_path
|
216 |
-
|
217 |
-
|
218 |
-
def get_guider(options, key):
|
219 |
-
guider = st.sidebar.selectbox(
|
220 |
-
f"Discretization #{key}",
|
221 |
-
[
|
222 |
-
"VanillaCFG",
|
223 |
-
"IdentityGuider",
|
224 |
-
"LinearPredictionGuider",
|
225 |
-
],
|
226 |
-
options.get("guider", 0),
|
227 |
-
)
|
228 |
-
|
229 |
-
additional_guider_kwargs = options.pop("additional_guider_kwargs", {})
|
230 |
-
|
231 |
-
if guider == "IdentityGuider":
|
232 |
-
guider_config = {
|
233 |
-
"target": "sgm.modules.diffusionmodules.guiders.IdentityGuider"
|
234 |
-
}
|
235 |
-
elif guider == "VanillaCFG":
|
236 |
-
scale_schedule = st.sidebar.selectbox(
|
237 |
-
f"Scale schedule #{key}",
|
238 |
-
["Identity", "Oscillating"],
|
239 |
-
)
|
240 |
-
|
241 |
-
if scale_schedule == "Identity":
|
242 |
-
scale = st.number_input(
|
243 |
-
f"cfg-scale #{key}",
|
244 |
-
value=options.get("cfg", 5.0),
|
245 |
-
min_value=0.0,
|
246 |
-
)
|
247 |
-
|
248 |
-
scale_schedule_config = {
|
249 |
-
"target": "sgm.modules.diffusionmodules.guiders.IdentitySchedule",
|
250 |
-
"params": {"scale": scale},
|
251 |
-
}
|
252 |
-
|
253 |
-
elif scale_schedule == "Oscillating":
|
254 |
-
small_scale = st.number_input(
|
255 |
-
f"small cfg-scale #{key}",
|
256 |
-
value=4.0,
|
257 |
-
min_value=0.0,
|
258 |
-
)
|
259 |
-
|
260 |
-
large_scale = st.number_input(
|
261 |
-
f"large cfg-scale #{key}",
|
262 |
-
value=16.0,
|
263 |
-
min_value=0.0,
|
264 |
-
)
|
265 |
-
|
266 |
-
sigma_cutoff = st.number_input(
|
267 |
-
f"sigma cutoff #{key}",
|
268 |
-
value=1.0,
|
269 |
-
min_value=0.0,
|
270 |
-
)
|
271 |
-
|
272 |
-
scale_schedule_config = {
|
273 |
-
"target": "sgm.modules.diffusionmodules.guiders.OscillatingSchedule",
|
274 |
-
"params": {
|
275 |
-
"small_scale": small_scale,
|
276 |
-
"large_scale": large_scale,
|
277 |
-
"sigma_cutoff": sigma_cutoff,
|
278 |
-
},
|
279 |
-
}
|
280 |
-
else:
|
281 |
-
raise NotImplementedError
|
282 |
-
|
283 |
-
guider_config = {
|
284 |
-
"target": "sgm.modules.diffusionmodules.guiders.VanillaCFG",
|
285 |
-
"params": {
|
286 |
-
"scale_schedule_config": scale_schedule_config,
|
287 |
-
**additional_guider_kwargs,
|
288 |
-
},
|
289 |
-
}
|
290 |
-
elif guider == "LinearPredictionGuider":
|
291 |
-
max_scale = st.number_input(
|
292 |
-
f"max-cfg-scale #{key}",
|
293 |
-
value=options.get("cfg", 1.5),
|
294 |
-
min_value=1.0,
|
295 |
-
)
|
296 |
-
min_scale = st.number_input(
|
297 |
-
f"min guidance scale",
|
298 |
-
value=options.get("min_cfg", 1.0),
|
299 |
-
min_value=1.0,
|
300 |
-
max_value=10.0,
|
301 |
-
)
|
302 |
-
|
303 |
-
guider_config = {
|
304 |
-
"target": "sgm.modules.diffusionmodules.guiders.LinearPredictionGuider",
|
305 |
-
"params": {
|
306 |
-
"max_scale": max_scale,
|
307 |
-
"min_scale": min_scale,
|
308 |
-
"num_frames": options["num_frames"],
|
309 |
-
**additional_guider_kwargs,
|
310 |
-
},
|
311 |
-
}
|
312 |
-
else:
|
313 |
-
raise NotImplementedError
|
314 |
-
return guider_config
|
315 |
-
|
316 |
-
|
317 |
-
def init_sampling(
|
318 |
-
key=1,
|
319 |
-
img2img_strength: Optional[float] = None,
|
320 |
-
specify_num_samples: bool = True,
|
321 |
-
stage2strength: Optional[float] = None,
|
322 |
-
options: Optional[Dict[str, int]] = None,
|
323 |
-
):
|
324 |
-
options = {} if options is None else options
|
325 |
-
|
326 |
-
num_rows, num_cols = 1, 1
|
327 |
-
if specify_num_samples:
|
328 |
-
num_cols = st.number_input(
|
329 |
-
f"num cols #{key}", value=num_cols, min_value=1, max_value=10
|
330 |
-
)
|
331 |
-
|
332 |
-
steps = st.sidebar.number_input(
|
333 |
-
f"steps #{key}", value=options.get("num_steps", 40), min_value=1, max_value=1000
|
334 |
-
)
|
335 |
-
sampler = st.sidebar.selectbox(
|
336 |
-
f"Sampler #{key}",
|
337 |
-
[
|
338 |
-
"EulerEDMSampler",
|
339 |
-
"HeunEDMSampler",
|
340 |
-
"EulerAncestralSampler",
|
341 |
-
"DPMPP2SAncestralSampler",
|
342 |
-
"DPMPP2MSampler",
|
343 |
-
"LinearMultistepSampler",
|
344 |
-
],
|
345 |
-
options.get("sampler", 0),
|
346 |
-
)
|
347 |
-
discretization = st.sidebar.selectbox(
|
348 |
-
f"Discretization #{key}",
|
349 |
-
[
|
350 |
-
"LegacyDDPMDiscretization",
|
351 |
-
"EDMDiscretization",
|
352 |
-
],
|
353 |
-
options.get("discretization", 0),
|
354 |
-
)
|
355 |
-
|
356 |
-
discretization_config = get_discretization(discretization, options=options, key=key)
|
357 |
-
|
358 |
-
guider_config = get_guider(options=options, key=key)
|
359 |
-
|
360 |
-
sampler = get_sampler(sampler, steps, discretization_config, guider_config, key=key)
|
361 |
-
if img2img_strength is not None:
|
362 |
-
st.warning(
|
363 |
-
f"Wrapping {sampler.__class__.__name__} with Img2ImgDiscretizationWrapper"
|
364 |
-
)
|
365 |
-
sampler.discretization = Img2ImgDiscretizationWrapper(
|
366 |
-
sampler.discretization, strength=img2img_strength
|
367 |
-
)
|
368 |
-
if stage2strength is not None:
|
369 |
-
sampler.discretization = Txt2NoisyDiscretizationWrapper(
|
370 |
-
sampler.discretization, strength=stage2strength, original_steps=steps
|
371 |
-
)
|
372 |
-
return sampler, num_rows, num_cols
|
373 |
-
|
374 |
-
|
375 |
-
def get_discretization(discretization, options, key=1):
|
376 |
-
if discretization == "LegacyDDPMDiscretization":
|
377 |
-
discretization_config = {
|
378 |
-
"target": "sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization",
|
379 |
-
}
|
380 |
-
elif discretization == "EDMDiscretization":
|
381 |
-
sigma_min = st.number_input(
|
382 |
-
f"sigma_min #{key}", value=options.get("sigma_min", 0.03)
|
383 |
-
) # 0.0292
|
384 |
-
sigma_max = st.number_input(
|
385 |
-
f"sigma_max #{key}", value=options.get("sigma_max", 14.61)
|
386 |
-
) # 14.6146
|
387 |
-
rho = st.number_input(f"rho #{key}", value=options.get("rho", 3.0))
|
388 |
-
discretization_config = {
|
389 |
-
"target": "sgm.modules.diffusionmodules.discretizer.EDMDiscretization",
|
390 |
-
"params": {
|
391 |
-
"sigma_min": sigma_min,
|
392 |
-
"sigma_max": sigma_max,
|
393 |
-
"rho": rho,
|
394 |
-
},
|
395 |
-
}
|
396 |
-
|
397 |
-
return discretization_config
|
398 |
-
|
399 |
-
|
400 |
-
def get_sampler(sampler_name, steps, discretization_config, guider_config, key=1):
|
401 |
-
if sampler_name == "EulerEDMSampler" or sampler_name == "HeunEDMSampler":
|
402 |
-
s_churn = st.sidebar.number_input(f"s_churn #{key}", value=0.0, min_value=0.0)
|
403 |
-
s_tmin = st.sidebar.number_input(f"s_tmin #{key}", value=0.0, min_value=0.0)
|
404 |
-
s_tmax = st.sidebar.number_input(f"s_tmax #{key}", value=999.0, min_value=0.0)
|
405 |
-
s_noise = st.sidebar.number_input(f"s_noise #{key}", value=1.0, min_value=0.0)
|
406 |
-
|
407 |
-
if sampler_name == "EulerEDMSampler":
|
408 |
-
sampler = EulerEDMSampler(
|
409 |
-
num_steps=steps,
|
410 |
-
discretization_config=discretization_config,
|
411 |
-
guider_config=guider_config,
|
412 |
-
s_churn=s_churn,
|
413 |
-
s_tmin=s_tmin,
|
414 |
-
s_tmax=s_tmax,
|
415 |
-
s_noise=s_noise,
|
416 |
-
verbose=True,
|
417 |
-
)
|
418 |
-
elif sampler_name == "HeunEDMSampler":
|
419 |
-
sampler = HeunEDMSampler(
|
420 |
-
num_steps=steps,
|
421 |
-
discretization_config=discretization_config,
|
422 |
-
guider_config=guider_config,
|
423 |
-
s_churn=s_churn,
|
424 |
-
s_tmin=s_tmin,
|
425 |
-
s_tmax=s_tmax,
|
426 |
-
s_noise=s_noise,
|
427 |
-
verbose=True,
|
428 |
-
)
|
429 |
-
elif (
|
430 |
-
sampler_name == "EulerAncestralSampler"
|
431 |
-
or sampler_name == "DPMPP2SAncestralSampler"
|
432 |
-
):
|
433 |
-
s_noise = st.sidebar.number_input("s_noise", value=1.0, min_value=0.0)
|
434 |
-
eta = st.sidebar.number_input("eta", value=1.0, min_value=0.0)
|
435 |
-
|
436 |
-
if sampler_name == "EulerAncestralSampler":
|
437 |
-
sampler = EulerAncestralSampler(
|
438 |
-
num_steps=steps,
|
439 |
-
discretization_config=discretization_config,
|
440 |
-
guider_config=guider_config,
|
441 |
-
eta=eta,
|
442 |
-
s_noise=s_noise,
|
443 |
-
verbose=True,
|
444 |
-
)
|
445 |
-
elif sampler_name == "DPMPP2SAncestralSampler":
|
446 |
-
sampler = DPMPP2SAncestralSampler(
|
447 |
-
num_steps=steps,
|
448 |
-
discretization_config=discretization_config,
|
449 |
-
guider_config=guider_config,
|
450 |
-
eta=eta,
|
451 |
-
s_noise=s_noise,
|
452 |
-
verbose=True,
|
453 |
-
)
|
454 |
-
elif sampler_name == "DPMPP2MSampler":
|
455 |
-
sampler = DPMPP2MSampler(
|
456 |
-
num_steps=steps,
|
457 |
-
discretization_config=discretization_config,
|
458 |
-
guider_config=guider_config,
|
459 |
-
verbose=True,
|
460 |
-
)
|
461 |
-
elif sampler_name == "LinearMultistepSampler":
|
462 |
-
order = st.sidebar.number_input("order", value=4, min_value=1)
|
463 |
-
sampler = LinearMultistepSampler(
|
464 |
-
num_steps=steps,
|
465 |
-
discretization_config=discretization_config,
|
466 |
-
guider_config=guider_config,
|
467 |
-
order=order,
|
468 |
-
verbose=True,
|
469 |
-
)
|
470 |
-
else:
|
471 |
-
raise ValueError(f"unknown sampler {sampler_name}!")
|
472 |
-
|
473 |
-
return sampler
|
474 |
-
|
475 |
-
|
476 |
-
def get_interactive_image() -> Image.Image:
|
477 |
-
image = st.file_uploader("Input", type=["jpg", "JPEG", "png"])
|
478 |
-
if image is not None:
|
479 |
-
image = Image.open(image)
|
480 |
-
if not image.mode == "RGB":
|
481 |
-
image = image.convert("RGB")
|
482 |
-
return image
|
483 |
-
|
484 |
-
|
485 |
-
def load_img(
|
486 |
-
display: bool = True,
|
487 |
-
size: Union[None, int, Tuple[int, int]] = None,
|
488 |
-
center_crop: bool = False,
|
489 |
-
):
|
490 |
-
image = get_interactive_image()
|
491 |
-
if image is None:
|
492 |
-
return None
|
493 |
-
if display:
|
494 |
-
st.image(image)
|
495 |
-
w, h = image.size
|
496 |
-
print(f"loaded input image of size ({w}, {h})")
|
497 |
-
|
498 |
-
transform = []
|
499 |
-
if size is not None:
|
500 |
-
transform.append(transforms.Resize(size))
|
501 |
-
if center_crop:
|
502 |
-
transform.append(transforms.CenterCrop(size))
|
503 |
-
transform.append(transforms.ToTensor())
|
504 |
-
transform.append(transforms.Lambda(lambda x: 2.0 * x - 1.0))
|
505 |
-
|
506 |
-
transform = transforms.Compose(transform)
|
507 |
-
img = transform(image)[None, ...]
|
508 |
-
st.text(f"input min/max/mean: {img.min():.3f}/{img.max():.3f}/{img.mean():.3f}")
|
509 |
-
return img
|
510 |
-
|
511 |
-
|
512 |
-
def get_init_img(batch_size=1, key=None):
|
513 |
-
init_image = load_img(key=key).cuda()
|
514 |
-
init_image = repeat(init_image, "1 ... -> b ...", b=batch_size)
|
515 |
-
return init_image
|
516 |
-
|
517 |
-
|
518 |
-
def do_sample(
|
519 |
-
model,
|
520 |
-
sampler,
|
521 |
-
value_dict,
|
522 |
-
num_samples,
|
523 |
-
H,
|
524 |
-
W,
|
525 |
-
C,
|
526 |
-
F,
|
527 |
-
force_uc_zero_embeddings: Optional[List] = None,
|
528 |
-
force_cond_zero_embeddings: Optional[List] = None,
|
529 |
-
batch2model_input: List = None,
|
530 |
-
return_latents=False,
|
531 |
-
filter=None,
|
532 |
-
T=None,
|
533 |
-
additional_batch_uc_fields=None,
|
534 |
-
decoding_t=None,
|
535 |
-
):
|
536 |
-
force_uc_zero_embeddings = default(force_uc_zero_embeddings, [])
|
537 |
-
batch2model_input = default(batch2model_input, [])
|
538 |
-
additional_batch_uc_fields = default(additional_batch_uc_fields, [])
|
539 |
-
|
540 |
-
st.text("Sampling")
|
541 |
-
|
542 |
-
outputs = st.empty()
|
543 |
-
precision_scope = autocast
|
544 |
-
with torch.no_grad():
|
545 |
-
with precision_scope("cuda"):
|
546 |
-
with model.ema_scope():
|
547 |
-
if T is not None:
|
548 |
-
num_samples = [num_samples, T]
|
549 |
-
else:
|
550 |
-
num_samples = [num_samples]
|
551 |
-
|
552 |
-
load_model(model.conditioner)
|
553 |
-
batch, batch_uc = get_batch(
|
554 |
-
get_unique_embedder_keys_from_conditioner(model.conditioner),
|
555 |
-
value_dict,
|
556 |
-
num_samples,
|
557 |
-
T=T,
|
558 |
-
additional_batch_uc_fields=additional_batch_uc_fields,
|
559 |
-
)
|
560 |
-
|
561 |
-
c, uc = model.conditioner.get_unconditional_conditioning(
|
562 |
-
batch,
|
563 |
-
batch_uc=batch_uc,
|
564 |
-
force_uc_zero_embeddings=force_uc_zero_embeddings,
|
565 |
-
force_cond_zero_embeddings=force_cond_zero_embeddings,
|
566 |
-
)
|
567 |
-
unload_model(model.conditioner)
|
568 |
-
|
569 |
-
for k in c:
|
570 |
-
if not k == "crossattn":
|
571 |
-
c[k], uc[k] = map(
|
572 |
-
lambda y: y[k][: math.prod(num_samples)].to("cuda"), (c, uc)
|
573 |
-
)
|
574 |
-
if k in ["crossattn", "concat"] and T is not None:
|
575 |
-
uc[k] = repeat(uc[k], "b ... -> b t ...", t=T)
|
576 |
-
uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=T)
|
577 |
-
c[k] = repeat(c[k], "b ... -> b t ...", t=T)
|
578 |
-
c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=T)
|
579 |
-
|
580 |
-
additional_model_inputs = {}
|
581 |
-
for k in batch2model_input:
|
582 |
-
if k == "image_only_indicator":
|
583 |
-
assert T is not None
|
584 |
-
|
585 |
-
if isinstance(
|
586 |
-
sampler.guider, (VanillaCFG, LinearPredictionGuider)
|
587 |
-
):
|
588 |
-
additional_model_inputs[k] = torch.zeros(
|
589 |
-
num_samples[0] * 2, num_samples[1]
|
590 |
-
).to("cuda")
|
591 |
-
else:
|
592 |
-
additional_model_inputs[k] = torch.zeros(num_samples).to(
|
593 |
-
"cuda"
|
594 |
-
)
|
595 |
-
else:
|
596 |
-
additional_model_inputs[k] = batch[k]
|
597 |
-
|
598 |
-
shape = (math.prod(num_samples), C, H // F, W // F)
|
599 |
-
randn = torch.randn(shape).to("cuda")
|
600 |
-
|
601 |
-
def denoiser(input, sigma, c):
|
602 |
-
return model.denoiser(
|
603 |
-
model.model, input, sigma, c, **additional_model_inputs
|
604 |
-
)
|
605 |
-
|
606 |
-
load_model(model.denoiser)
|
607 |
-
load_model(model.model)
|
608 |
-
samples_z = sampler(denoiser, randn, cond=c, uc=uc)
|
609 |
-
unload_model(model.model)
|
610 |
-
unload_model(model.denoiser)
|
611 |
-
|
612 |
-
load_model(model.first_stage_model)
|
613 |
-
model.en_and_decode_n_samples_a_time = (
|
614 |
-
decoding_t # Decode n frames at a time
|
615 |
-
)
|
616 |
-
samples_x = model.decode_first_stage(samples_z)
|
617 |
-
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
|
618 |
-
unload_model(model.first_stage_model)
|
619 |
-
|
620 |
-
if filter is not None:
|
621 |
-
samples = filter(samples)
|
622 |
-
|
623 |
-
if T is None:
|
624 |
-
grid = torch.stack([samples])
|
625 |
-
grid = rearrange(grid, "n b c h w -> (n h) (b w) c")
|
626 |
-
outputs.image(grid.cpu().numpy())
|
627 |
-
else:
|
628 |
-
as_vids = rearrange(samples, "(b t) c h w -> b t c h w", t=T)
|
629 |
-
for i, vid in enumerate(as_vids):
|
630 |
-
grid = rearrange(make_grid(vid, nrow=4), "c h w -> h w c")
|
631 |
-
st.image(
|
632 |
-
grid.cpu().numpy(),
|
633 |
-
f"Sample #{i} as image",
|
634 |
-
)
|
635 |
-
|
636 |
-
if return_latents:
|
637 |
-
return samples, samples_z
|
638 |
-
return samples
|
639 |
-
|
640 |
-
|
641 |
-
def get_batch(
|
642 |
-
keys,
|
643 |
-
value_dict: dict,
|
644 |
-
N: Union[List, ListConfig],
|
645 |
-
device: str = "cuda",
|
646 |
-
T: int = None,
|
647 |
-
additional_batch_uc_fields: List[str] = [],
|
648 |
-
):
|
649 |
-
# Hardcoded demo setups; might undergo some changes in the future
|
650 |
-
|
651 |
-
batch = {}
|
652 |
-
batch_uc = {}
|
653 |
-
|
654 |
-
for key in keys:
|
655 |
-
if key == "txt":
|
656 |
-
batch["txt"] = [value_dict["prompt"]] * math.prod(N)
|
657 |
-
|
658 |
-
batch_uc["txt"] = [value_dict["negative_prompt"]] * math.prod(N)
|
659 |
-
|
660 |
-
elif key == "original_size_as_tuple":
|
661 |
-
batch["original_size_as_tuple"] = (
|
662 |
-
torch.tensor([value_dict["orig_height"], value_dict["orig_width"]])
|
663 |
-
.to(device)
|
664 |
-
.repeat(math.prod(N), 1)
|
665 |
-
)
|
666 |
-
elif key == "crop_coords_top_left":
|
667 |
-
batch["crop_coords_top_left"] = (
|
668 |
-
torch.tensor(
|
669 |
-
[value_dict["crop_coords_top"], value_dict["crop_coords_left"]]
|
670 |
-
)
|
671 |
-
.to(device)
|
672 |
-
.repeat(math.prod(N), 1)
|
673 |
-
)
|
674 |
-
elif key == "aesthetic_score":
|
675 |
-
batch["aesthetic_score"] = (
|
676 |
-
torch.tensor([value_dict["aesthetic_score"]])
|
677 |
-
.to(device)
|
678 |
-
.repeat(math.prod(N), 1)
|
679 |
-
)
|
680 |
-
batch_uc["aesthetic_score"] = (
|
681 |
-
torch.tensor([value_dict["negative_aesthetic_score"]])
|
682 |
-
.to(device)
|
683 |
-
.repeat(math.prod(N), 1)
|
684 |
-
)
|
685 |
-
|
686 |
-
elif key == "target_size_as_tuple":
|
687 |
-
batch["target_size_as_tuple"] = (
|
688 |
-
torch.tensor([value_dict["target_height"], value_dict["target_width"]])
|
689 |
-
.to(device)
|
690 |
-
.repeat(math.prod(N), 1)
|
691 |
-
)
|
692 |
-
elif key == "fps":
|
693 |
-
batch[key] = (
|
694 |
-
torch.tensor([value_dict["fps"]]).to(device).repeat(math.prod(N))
|
695 |
-
)
|
696 |
-
elif key == "fps_id":
|
697 |
-
batch[key] = (
|
698 |
-
torch.tensor([value_dict["fps_id"]]).to(device).repeat(math.prod(N))
|
699 |
-
)
|
700 |
-
elif key == "motion_bucket_id":
|
701 |
-
batch[key] = (
|
702 |
-
torch.tensor([value_dict["motion_bucket_id"]])
|
703 |
-
.to(device)
|
704 |
-
.repeat(math.prod(N))
|
705 |
-
)
|
706 |
-
elif key == "pool_image":
|
707 |
-
batch[key] = repeat(value_dict[key], "1 ... -> b ...", b=math.prod(N)).to(
|
708 |
-
device, dtype=torch.half
|
709 |
-
)
|
710 |
-
elif key == "cond_aug":
|
711 |
-
batch[key] = repeat(
|
712 |
-
torch.tensor([value_dict["cond_aug"]]).to("cuda"),
|
713 |
-
"1 -> b",
|
714 |
-
b=math.prod(N),
|
715 |
-
)
|
716 |
-
elif key == "cond_frames":
|
717 |
-
batch[key] = repeat(value_dict["cond_frames"], "1 ... -> b ...", b=N[0])
|
718 |
-
elif key == "cond_frames_without_noise":
|
719 |
-
batch[key] = repeat(
|
720 |
-
value_dict["cond_frames_without_noise"], "1 ... -> b ...", b=N[0]
|
721 |
-
)
|
722 |
-
else:
|
723 |
-
batch[key] = value_dict[key]
|
724 |
-
|
725 |
-
if T is not None:
|
726 |
-
batch["num_video_frames"] = T
|
727 |
-
|
728 |
-
for key in batch.keys():
|
729 |
-
if key not in batch_uc and isinstance(batch[key], torch.Tensor):
|
730 |
-
batch_uc[key] = torch.clone(batch[key])
|
731 |
-
elif key in additional_batch_uc_fields and key not in batch_uc:
|
732 |
-
batch_uc[key] = copy.copy(batch[key])
|
733 |
-
return batch, batch_uc
|
734 |
-
|
735 |
-
|
736 |
-
@torch.no_grad()
|
737 |
-
def do_img2img(
|
738 |
-
img,
|
739 |
-
model,
|
740 |
-
sampler,
|
741 |
-
value_dict,
|
742 |
-
num_samples,
|
743 |
-
force_uc_zero_embeddings: Optional[List] = None,
|
744 |
-
force_cond_zero_embeddings: Optional[List] = None,
|
745 |
-
additional_kwargs={},
|
746 |
-
offset_noise_level: int = 0.0,
|
747 |
-
return_latents=False,
|
748 |
-
skip_encode=False,
|
749 |
-
filter=None,
|
750 |
-
add_noise=True,
|
751 |
-
):
|
752 |
-
st.text("Sampling")
|
753 |
-
|
754 |
-
outputs = st.empty()
|
755 |
-
precision_scope = autocast
|
756 |
-
with torch.no_grad():
|
757 |
-
with precision_scope("cuda"):
|
758 |
-
with model.ema_scope():
|
759 |
-
load_model(model.conditioner)
|
760 |
-
batch, batch_uc = get_batch(
|
761 |
-
get_unique_embedder_keys_from_conditioner(model.conditioner),
|
762 |
-
value_dict,
|
763 |
-
[num_samples],
|
764 |
-
)
|
765 |
-
c, uc = model.conditioner.get_unconditional_conditioning(
|
766 |
-
batch,
|
767 |
-
batch_uc=batch_uc,
|
768 |
-
force_uc_zero_embeddings=force_uc_zero_embeddings,
|
769 |
-
force_cond_zero_embeddings=force_cond_zero_embeddings,
|
770 |
-
)
|
771 |
-
unload_model(model.conditioner)
|
772 |
-
for k in c:
|
773 |
-
c[k], uc[k] = map(lambda y: y[k][:num_samples].to("cuda"), (c, uc))
|
774 |
-
|
775 |
-
for k in additional_kwargs:
|
776 |
-
c[k] = uc[k] = additional_kwargs[k]
|
777 |
-
if skip_encode:
|
778 |
-
z = img
|
779 |
-
else:
|
780 |
-
load_model(model.first_stage_model)
|
781 |
-
z = model.encode_first_stage(img)
|
782 |
-
unload_model(model.first_stage_model)
|
783 |
-
|
784 |
-
noise = torch.randn_like(z)
|
785 |
-
|
786 |
-
sigmas = sampler.discretization(sampler.num_steps).cuda()
|
787 |
-
sigma = sigmas[0]
|
788 |
-
|
789 |
-
st.info(f"all sigmas: {sigmas}")
|
790 |
-
st.info(f"noising sigma: {sigma}")
|
791 |
-
if offset_noise_level > 0.0:
|
792 |
-
noise = noise + offset_noise_level * append_dims(
|
793 |
-
torch.randn(z.shape[0], device=z.device), z.ndim
|
794 |
-
)
|
795 |
-
if add_noise:
|
796 |
-
noised_z = z + noise * append_dims(sigma, z.ndim).cuda()
|
797 |
-
noised_z = noised_z / torch.sqrt(
|
798 |
-
1.0 + sigmas[0] ** 2.0
|
799 |
-
) # Note: hardcoded to DDPM-like scaling. need to generalize later.
|
800 |
-
else:
|
801 |
-
noised_z = z / torch.sqrt(1.0 + sigmas[0] ** 2.0)
|
802 |
-
|
803 |
-
def denoiser(x, sigma, c):
|
804 |
-
return model.denoiser(model.model, x, sigma, c)
|
805 |
-
|
806 |
-
load_model(model.denoiser)
|
807 |
-
load_model(model.model)
|
808 |
-
samples_z = sampler(denoiser, noised_z, cond=c, uc=uc)
|
809 |
-
unload_model(model.model)
|
810 |
-
unload_model(model.denoiser)
|
811 |
-
|
812 |
-
load_model(model.first_stage_model)
|
813 |
-
samples_x = model.decode_first_stage(samples_z)
|
814 |
-
unload_model(model.first_stage_model)
|
815 |
-
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
|
816 |
-
|
817 |
-
if filter is not None:
|
818 |
-
samples = filter(samples)
|
819 |
-
|
820 |
-
grid = rearrange(grid, "n b c h w -> (n h) (b w) c")
|
821 |
-
outputs.image(grid.cpu().numpy())
|
822 |
-
if return_latents:
|
823 |
-
return samples, samples_z
|
824 |
-
return samples
|
825 |
-
|
826 |
-
|
827 |
-
def get_resizing_factor(
|
828 |
-
desired_shape: Tuple[int, int], current_shape: Tuple[int, int]
|
829 |
-
) -> float:
|
830 |
-
r_bound = desired_shape[1] / desired_shape[0]
|
831 |
-
aspect_r = current_shape[1] / current_shape[0]
|
832 |
-
if r_bound >= 1.0:
|
833 |
-
if aspect_r >= r_bound:
|
834 |
-
factor = min(desired_shape) / min(current_shape)
|
835 |
-
else:
|
836 |
-
if aspect_r < 1.0:
|
837 |
-
factor = max(desired_shape) / min(current_shape)
|
838 |
-
else:
|
839 |
-
factor = max(desired_shape) / max(current_shape)
|
840 |
-
else:
|
841 |
-
if aspect_r <= r_bound:
|
842 |
-
factor = min(desired_shape) / min(current_shape)
|
843 |
-
else:
|
844 |
-
if aspect_r > 1:
|
845 |
-
factor = max(desired_shape) / min(current_shape)
|
846 |
-
else:
|
847 |
-
factor = max(desired_shape) / max(current_shape)
|
848 |
-
|
849 |
-
return factor
|
850 |
-
|
851 |
-
|
852 |
-
def get_interactive_image(key=None) -> Image.Image:
|
853 |
-
image = st.file_uploader("Input", type=["jpg", "JPEG", "png"], key=key)
|
854 |
-
if image is not None:
|
855 |
-
image = Image.open(image)
|
856 |
-
if not image.mode == "RGB":
|
857 |
-
image = image.convert("RGB")
|
858 |
-
return image
|
859 |
-
|
860 |
-
|
861 |
-
def load_img_for_prediction(
|
862 |
-
W: int, H: int, display=True, key=None, device="cuda"
|
863 |
-
) -> torch.Tensor:
|
864 |
-
image = get_interactive_image(key=key)
|
865 |
-
if image is None:
|
866 |
-
return None
|
867 |
-
if display:
|
868 |
-
st.image(image)
|
869 |
-
w, h = image.size
|
870 |
-
|
871 |
-
image = np.array(image).transpose(2, 0, 1)
|
872 |
-
image = torch.from_numpy(image).to(dtype=torch.float32) / 255.0
|
873 |
-
image = image.unsqueeze(0)
|
874 |
-
|
875 |
-
rfs = get_resizing_factor((H, W), (h, w))
|
876 |
-
resize_size = [int(np.ceil(rfs * s)) for s in (h, w)]
|
877 |
-
top = (resize_size[0] - H) // 2
|
878 |
-
left = (resize_size[1] - W) // 2
|
879 |
-
|
880 |
-
image = torch.nn.functional.interpolate(
|
881 |
-
image, resize_size, mode="area", antialias=False
|
882 |
-
)
|
883 |
-
image = TT.functional.crop(image, top=top, left=left, height=H, width=W)
|
884 |
-
|
885 |
-
if display:
|
886 |
-
numpy_img = np.transpose(image[0].numpy(), (1, 2, 0))
|
887 |
-
pil_image = Image.fromarray((numpy_img * 255).astype(np.uint8))
|
888 |
-
st.image(pil_image)
|
889 |
-
return image.to(device) * 2.0 - 1.0
|
890 |
-
|
891 |
-
|
892 |
-
def save_video_as_grid_and_mp4(
|
893 |
-
video_batch: torch.Tensor, save_path: str, T: int, fps: int = 5
|
894 |
-
):
|
895 |
-
os.makedirs(save_path, exist_ok=True)
|
896 |
-
base_count = len(glob(os.path.join(save_path, "*.mp4")))
|
897 |
-
|
898 |
-
video_batch = rearrange(video_batch, "(b t) c h w -> b t c h w", t=T)
|
899 |
-
video_batch = embed_watermark(video_batch)
|
900 |
-
for vid in video_batch:
|
901 |
-
save_image(vid, fp=os.path.join(save_path, f"{base_count:06d}.png"), nrow=4)
|
902 |
-
|
903 |
-
video_path = os.path.join(save_path, f"{base_count:06d}.mp4")
|
904 |
-
|
905 |
-
writer = cv2.VideoWriter(
|
906 |
-
video_path,
|
907 |
-
cv2.VideoWriter_fourcc(*"MP4V"),
|
908 |
-
fps,
|
909 |
-
(vid.shape[-1], vid.shape[-2]),
|
910 |
-
)
|
911 |
-
|
912 |
-
vid = (
|
913 |
-
(rearrange(vid, "t c h w -> t h w c") * 255).cpu().numpy().astype(np.uint8)
|
914 |
-
)
|
915 |
-
for frame in vid:
|
916 |
-
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
917 |
-
writer.write(frame)
|
918 |
-
|
919 |
-
writer.release()
|
920 |
-
|
921 |
-
video_path_h264 = video_path[:-4] + "_h264.mp4"
|
922 |
-
os.system(f"ffmpeg -i {video_path} -c:v libx264 {video_path_h264}")
|
923 |
-
|
924 |
-
with open(video_path_h264, "rb") as f:
|
925 |
-
video_bytes = f.read()
|
926 |
-
st.video(video_bytes)
|
927 |
-
|
928 |
-
base_count += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scripts/demo/video_sampling.py
DELETED
@@ -1,200 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
-
from pytorch_lightning import seed_everything
|
4 |
-
|
5 |
-
from scripts.demo.streamlit_helpers import *
|
6 |
-
|
7 |
-
SAVE_PATH = "outputs/demo/vid/"
|
8 |
-
|
9 |
-
VERSION2SPECS = {
|
10 |
-
"svd": {
|
11 |
-
"T": 14,
|
12 |
-
"H": 576,
|
13 |
-
"W": 1024,
|
14 |
-
"C": 4,
|
15 |
-
"f": 8,
|
16 |
-
"config": "configs/inference/svd.yaml",
|
17 |
-
"ckpt": "checkpoints/svd.safetensors",
|
18 |
-
"options": {
|
19 |
-
"discretization": 1,
|
20 |
-
"cfg": 2.5,
|
21 |
-
"sigma_min": 0.002,
|
22 |
-
"sigma_max": 700.0,
|
23 |
-
"rho": 7.0,
|
24 |
-
"guider": 2,
|
25 |
-
"force_uc_zero_embeddings": ["cond_frames", "cond_frames_without_noise"],
|
26 |
-
"num_steps": 25,
|
27 |
-
},
|
28 |
-
},
|
29 |
-
"svd_image_decoder": {
|
30 |
-
"T": 14,
|
31 |
-
"H": 576,
|
32 |
-
"W": 1024,
|
33 |
-
"C": 4,
|
34 |
-
"f": 8,
|
35 |
-
"config": "configs/inference/svd_image_decoder.yaml",
|
36 |
-
"ckpt": "checkpoints/svd_image_decoder.safetensors",
|
37 |
-
"options": {
|
38 |
-
"discretization": 1,
|
39 |
-
"cfg": 2.5,
|
40 |
-
"sigma_min": 0.002,
|
41 |
-
"sigma_max": 700.0,
|
42 |
-
"rho": 7.0,
|
43 |
-
"guider": 2,
|
44 |
-
"force_uc_zero_embeddings": ["cond_frames", "cond_frames_without_noise"],
|
45 |
-
"num_steps": 25,
|
46 |
-
},
|
47 |
-
},
|
48 |
-
"svd_xt": {
|
49 |
-
"T": 25,
|
50 |
-
"H": 576,
|
51 |
-
"W": 1024,
|
52 |
-
"C": 4,
|
53 |
-
"f": 8,
|
54 |
-
"config": "configs/inference/svd.yaml",
|
55 |
-
"ckpt": "checkpoints/svd_xt.safetensors",
|
56 |
-
"options": {
|
57 |
-
"discretization": 1,
|
58 |
-
"cfg": 3.0,
|
59 |
-
"min_cfg": 1.5,
|
60 |
-
"sigma_min": 0.002,
|
61 |
-
"sigma_max": 700.0,
|
62 |
-
"rho": 7.0,
|
63 |
-
"guider": 2,
|
64 |
-
"force_uc_zero_embeddings": ["cond_frames", "cond_frames_without_noise"],
|
65 |
-
"num_steps": 30,
|
66 |
-
"decoding_t": 14,
|
67 |
-
},
|
68 |
-
},
|
69 |
-
"svd_xt_image_decoder": {
|
70 |
-
"T": 25,
|
71 |
-
"H": 576,
|
72 |
-
"W": 1024,
|
73 |
-
"C": 4,
|
74 |
-
"f": 8,
|
75 |
-
"config": "configs/inference/svd_image_decoder.yaml",
|
76 |
-
"ckpt": "checkpoints/svd_xt_image_decoder.safetensors",
|
77 |
-
"options": {
|
78 |
-
"discretization": 1,
|
79 |
-
"cfg": 3.0,
|
80 |
-
"min_cfg": 1.5,
|
81 |
-
"sigma_min": 0.002,
|
82 |
-
"sigma_max": 700.0,
|
83 |
-
"rho": 7.0,
|
84 |
-
"guider": 2,
|
85 |
-
"force_uc_zero_embeddings": ["cond_frames", "cond_frames_without_noise"],
|
86 |
-
"num_steps": 30,
|
87 |
-
"decoding_t": 14,
|
88 |
-
},
|
89 |
-
},
|
90 |
-
}
|
91 |
-
|
92 |
-
|
93 |
-
if __name__ == "__main__":
|
94 |
-
st.title("Stable Video Diffusion")
|
95 |
-
version = st.selectbox(
|
96 |
-
"Model Version",
|
97 |
-
[k for k in VERSION2SPECS.keys()],
|
98 |
-
0,
|
99 |
-
)
|
100 |
-
version_dict = VERSION2SPECS[version]
|
101 |
-
if st.checkbox("Load Model"):
|
102 |
-
mode = "img2vid"
|
103 |
-
else:
|
104 |
-
mode = "skip"
|
105 |
-
|
106 |
-
H = st.sidebar.number_input(
|
107 |
-
"H", value=version_dict["H"], min_value=64, max_value=2048
|
108 |
-
)
|
109 |
-
W = st.sidebar.number_input(
|
110 |
-
"W", value=version_dict["W"], min_value=64, max_value=2048
|
111 |
-
)
|
112 |
-
T = st.sidebar.number_input(
|
113 |
-
"T", value=version_dict["T"], min_value=0, max_value=128
|
114 |
-
)
|
115 |
-
C = version_dict["C"]
|
116 |
-
F = version_dict["f"]
|
117 |
-
options = version_dict["options"]
|
118 |
-
|
119 |
-
if mode != "skip":
|
120 |
-
state = init_st(version_dict, load_filter=True)
|
121 |
-
if state["msg"]:
|
122 |
-
st.info(state["msg"])
|
123 |
-
model = state["model"]
|
124 |
-
|
125 |
-
ukeys = set(
|
126 |
-
get_unique_embedder_keys_from_conditioner(state["model"].conditioner)
|
127 |
-
)
|
128 |
-
|
129 |
-
value_dict = init_embedder_options(
|
130 |
-
ukeys,
|
131 |
-
{},
|
132 |
-
)
|
133 |
-
|
134 |
-
value_dict["image_only_indicator"] = 0
|
135 |
-
|
136 |
-
if mode == "img2vid":
|
137 |
-
img = load_img_for_prediction(W, H)
|
138 |
-
cond_aug = st.number_input(
|
139 |
-
"Conditioning augmentation:", value=0.02, min_value=0.0
|
140 |
-
)
|
141 |
-
value_dict["cond_frames_without_noise"] = img
|
142 |
-
value_dict["cond_frames"] = img + cond_aug * torch.randn_like(img)
|
143 |
-
value_dict["cond_aug"] = cond_aug
|
144 |
-
|
145 |
-
seed = st.sidebar.number_input(
|
146 |
-
"seed", value=23, min_value=0, max_value=int(1e9)
|
147 |
-
)
|
148 |
-
seed_everything(seed)
|
149 |
-
|
150 |
-
save_locally, save_path = init_save_locally(
|
151 |
-
os.path.join(SAVE_PATH, version), init_value=True
|
152 |
-
)
|
153 |
-
|
154 |
-
options["num_frames"] = T
|
155 |
-
|
156 |
-
sampler, num_rows, num_cols = init_sampling(options=options)
|
157 |
-
num_samples = num_rows * num_cols
|
158 |
-
|
159 |
-
decoding_t = st.number_input(
|
160 |
-
"Decode t frames at a time (set small if you are low on VRAM)",
|
161 |
-
value=options.get("decoding_t", T),
|
162 |
-
min_value=1,
|
163 |
-
max_value=int(1e9),
|
164 |
-
)
|
165 |
-
|
166 |
-
if st.checkbox("Overwrite fps in mp4 generator", False):
|
167 |
-
saving_fps = st.number_input(
|
168 |
-
f"saving video at fps:", value=value_dict["fps"], min_value=1
|
169 |
-
)
|
170 |
-
else:
|
171 |
-
saving_fps = value_dict["fps"]
|
172 |
-
|
173 |
-
if st.button("Sample"):
|
174 |
-
out = do_sample(
|
175 |
-
model,
|
176 |
-
sampler,
|
177 |
-
value_dict,
|
178 |
-
num_samples,
|
179 |
-
H,
|
180 |
-
W,
|
181 |
-
C,
|
182 |
-
F,
|
183 |
-
T=T,
|
184 |
-
batch2model_input=["num_video_frames", "image_only_indicator"],
|
185 |
-
force_uc_zero_embeddings=options.get("force_uc_zero_embeddings", None),
|
186 |
-
force_cond_zero_embeddings=options.get(
|
187 |
-
"force_cond_zero_embeddings", None
|
188 |
-
),
|
189 |
-
return_latents=False,
|
190 |
-
decoding_t=decoding_t,
|
191 |
-
)
|
192 |
-
|
193 |
-
if isinstance(out, (tuple, list)):
|
194 |
-
samples, samples_z = out
|
195 |
-
else:
|
196 |
-
samples = out
|
197 |
-
samples_z = None
|
198 |
-
|
199 |
-
if save_locally:
|
200 |
-
save_video_as_grid_and_mp4(samples, save_path, T, fps=saving_fps)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scripts/sampling/configs/svd.yaml
DELETED
@@ -1,146 +0,0 @@
|
|
1 |
-
model:
|
2 |
-
target: sgm.models.diffusion.DiffusionEngine
|
3 |
-
params:
|
4 |
-
scale_factor: 0.18215
|
5 |
-
disable_first_stage_autocast: True
|
6 |
-
ckpt_path: checkpoints/svd.safetensors
|
7 |
-
|
8 |
-
denoiser_config:
|
9 |
-
target: sgm.modules.diffusionmodules.denoiser.Denoiser
|
10 |
-
params:
|
11 |
-
scaling_config:
|
12 |
-
target: sgm.modules.diffusionmodules.denoiser_scaling.VScalingWithEDMcNoise
|
13 |
-
|
14 |
-
network_config:
|
15 |
-
target: sgm.modules.diffusionmodules.video_model.VideoUNet
|
16 |
-
params:
|
17 |
-
adm_in_channels: 768
|
18 |
-
num_classes: sequential
|
19 |
-
use_checkpoint: True
|
20 |
-
in_channels: 8
|
21 |
-
out_channels: 4
|
22 |
-
model_channels: 320
|
23 |
-
attention_resolutions: [4, 2, 1]
|
24 |
-
num_res_blocks: 2
|
25 |
-
channel_mult: [1, 2, 4, 4]
|
26 |
-
num_head_channels: 64
|
27 |
-
use_linear_in_transformer: True
|
28 |
-
transformer_depth: 1
|
29 |
-
context_dim: 1024
|
30 |
-
spatial_transformer_attn_type: softmax-xformers
|
31 |
-
extra_ff_mix_layer: True
|
32 |
-
use_spatial_context: True
|
33 |
-
merge_strategy: learned_with_images
|
34 |
-
video_kernel_size: [3, 1, 1]
|
35 |
-
|
36 |
-
conditioner_config:
|
37 |
-
target: sgm.modules.GeneralConditioner
|
38 |
-
params:
|
39 |
-
emb_models:
|
40 |
-
- is_trainable: False
|
41 |
-
input_key: cond_frames_without_noise
|
42 |
-
target: sgm.modules.encoders.modules.FrozenOpenCLIPImagePredictionEmbedder
|
43 |
-
params:
|
44 |
-
n_cond_frames: 1
|
45 |
-
n_copies: 1
|
46 |
-
open_clip_embedding_config:
|
47 |
-
target: sgm.modules.encoders.modules.FrozenOpenCLIPImageEmbedder
|
48 |
-
params:
|
49 |
-
freeze: True
|
50 |
-
|
51 |
-
- input_key: fps_id
|
52 |
-
is_trainable: False
|
53 |
-
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
54 |
-
params:
|
55 |
-
outdim: 256
|
56 |
-
|
57 |
-
- input_key: motion_bucket_id
|
58 |
-
is_trainable: False
|
59 |
-
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
60 |
-
params:
|
61 |
-
outdim: 256
|
62 |
-
|
63 |
-
- input_key: cond_frames
|
64 |
-
is_trainable: False
|
65 |
-
target: sgm.modules.encoders.modules.VideoPredictionEmbedderWithEncoder
|
66 |
-
params:
|
67 |
-
disable_encoder_autocast: True
|
68 |
-
n_cond_frames: 1
|
69 |
-
n_copies: 1
|
70 |
-
is_ae: True
|
71 |
-
encoder_config:
|
72 |
-
target: sgm.models.autoencoder.AutoencoderKLModeOnly
|
73 |
-
params:
|
74 |
-
embed_dim: 4
|
75 |
-
monitor: val/rec_loss
|
76 |
-
ddconfig:
|
77 |
-
attn_type: vanilla-xformers
|
78 |
-
double_z: True
|
79 |
-
z_channels: 4
|
80 |
-
resolution: 256
|
81 |
-
in_channels: 3
|
82 |
-
out_ch: 3
|
83 |
-
ch: 128
|
84 |
-
ch_mult: [1, 2, 4, 4]
|
85 |
-
num_res_blocks: 2
|
86 |
-
attn_resolutions: []
|
87 |
-
dropout: 0.0
|
88 |
-
lossconfig:
|
89 |
-
target: torch.nn.Identity
|
90 |
-
|
91 |
-
- input_key: cond_aug
|
92 |
-
is_trainable: False
|
93 |
-
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
94 |
-
params:
|
95 |
-
outdim: 256
|
96 |
-
|
97 |
-
first_stage_config:
|
98 |
-
target: sgm.models.autoencoder.AutoencodingEngine
|
99 |
-
params:
|
100 |
-
loss_config:
|
101 |
-
target: torch.nn.Identity
|
102 |
-
regularizer_config:
|
103 |
-
target: sgm.modules.autoencoding.regularizers.DiagonalGaussianRegularizer
|
104 |
-
encoder_config:
|
105 |
-
target: sgm.modules.diffusionmodules.model.Encoder
|
106 |
-
params:
|
107 |
-
attn_type: vanilla
|
108 |
-
double_z: True
|
109 |
-
z_channels: 4
|
110 |
-
resolution: 256
|
111 |
-
in_channels: 3
|
112 |
-
out_ch: 3
|
113 |
-
ch: 128
|
114 |
-
ch_mult: [1, 2, 4, 4]
|
115 |
-
num_res_blocks: 2
|
116 |
-
attn_resolutions: []
|
117 |
-
dropout: 0.0
|
118 |
-
decoder_config:
|
119 |
-
target: sgm.modules.autoencoding.temporal_ae.VideoDecoder
|
120 |
-
params:
|
121 |
-
attn_type: vanilla
|
122 |
-
double_z: True
|
123 |
-
z_channels: 4
|
124 |
-
resolution: 256
|
125 |
-
in_channels: 3
|
126 |
-
out_ch: 3
|
127 |
-
ch: 128
|
128 |
-
ch_mult: [1, 2, 4, 4]
|
129 |
-
num_res_blocks: 2
|
130 |
-
attn_resolutions: []
|
131 |
-
dropout: 0.0
|
132 |
-
video_kernel_size: [3, 1, 1]
|
133 |
-
|
134 |
-
sampler_config:
|
135 |
-
target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
|
136 |
-
params:
|
137 |
-
discretization_config:
|
138 |
-
target: sgm.modules.diffusionmodules.discretizer.EDMDiscretization
|
139 |
-
params:
|
140 |
-
sigma_max: 700.0
|
141 |
-
|
142 |
-
guider_config:
|
143 |
-
target: sgm.modules.diffusionmodules.guiders.LinearPredictionGuider
|
144 |
-
params:
|
145 |
-
max_scale: 2.5
|
146 |
-
min_scale: 1.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scripts/sampling/configs/svd_image_decoder.yaml
DELETED
@@ -1,129 +0,0 @@
|
|
1 |
-
model:
|
2 |
-
target: sgm.models.diffusion.DiffusionEngine
|
3 |
-
params:
|
4 |
-
scale_factor: 0.18215
|
5 |
-
disable_first_stage_autocast: True
|
6 |
-
ckpt_path: checkpoints/svd_image_decoder.safetensors
|
7 |
-
|
8 |
-
denoiser_config:
|
9 |
-
target: sgm.modules.diffusionmodules.denoiser.Denoiser
|
10 |
-
params:
|
11 |
-
scaling_config:
|
12 |
-
target: sgm.modules.diffusionmodules.denoiser_scaling.VScalingWithEDMcNoise
|
13 |
-
|
14 |
-
network_config:
|
15 |
-
target: sgm.modules.diffusionmodules.video_model.VideoUNet
|
16 |
-
params:
|
17 |
-
adm_in_channels: 768
|
18 |
-
num_classes: sequential
|
19 |
-
use_checkpoint: True
|
20 |
-
in_channels: 8
|
21 |
-
out_channels: 4
|
22 |
-
model_channels: 320
|
23 |
-
attention_resolutions: [4, 2, 1]
|
24 |
-
num_res_blocks: 2
|
25 |
-
channel_mult: [1, 2, 4, 4]
|
26 |
-
num_head_channels: 64
|
27 |
-
use_linear_in_transformer: True
|
28 |
-
transformer_depth: 1
|
29 |
-
context_dim: 1024
|
30 |
-
spatial_transformer_attn_type: softmax-xformers
|
31 |
-
extra_ff_mix_layer: True
|
32 |
-
use_spatial_context: True
|
33 |
-
merge_strategy: learned_with_images
|
34 |
-
video_kernel_size: [3, 1, 1]
|
35 |
-
|
36 |
-
conditioner_config:
|
37 |
-
target: sgm.modules.GeneralConditioner
|
38 |
-
params:
|
39 |
-
emb_models:
|
40 |
-
- is_trainable: False
|
41 |
-
input_key: cond_frames_without_noise
|
42 |
-
target: sgm.modules.encoders.modules.FrozenOpenCLIPImagePredictionEmbedder
|
43 |
-
params:
|
44 |
-
n_cond_frames: 1
|
45 |
-
n_copies: 1
|
46 |
-
open_clip_embedding_config:
|
47 |
-
target: sgm.modules.encoders.modules.FrozenOpenCLIPImageEmbedder
|
48 |
-
params:
|
49 |
-
freeze: True
|
50 |
-
|
51 |
-
- input_key: fps_id
|
52 |
-
is_trainable: False
|
53 |
-
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
54 |
-
params:
|
55 |
-
outdim: 256
|
56 |
-
|
57 |
-
- input_key: motion_bucket_id
|
58 |
-
is_trainable: False
|
59 |
-
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
60 |
-
params:
|
61 |
-
outdim: 256
|
62 |
-
|
63 |
-
- input_key: cond_frames
|
64 |
-
is_trainable: False
|
65 |
-
target: sgm.modules.encoders.modules.VideoPredictionEmbedderWithEncoder
|
66 |
-
params:
|
67 |
-
disable_encoder_autocast: True
|
68 |
-
n_cond_frames: 1
|
69 |
-
n_copies: 1
|
70 |
-
is_ae: True
|
71 |
-
encoder_config:
|
72 |
-
target: sgm.models.autoencoder.AutoencoderKLModeOnly
|
73 |
-
params:
|
74 |
-
embed_dim: 4
|
75 |
-
monitor: val/rec_loss
|
76 |
-
ddconfig:
|
77 |
-
attn_type: vanilla-xformers
|
78 |
-
double_z: True
|
79 |
-
z_channels: 4
|
80 |
-
resolution: 256
|
81 |
-
in_channels: 3
|
82 |
-
out_ch: 3
|
83 |
-
ch: 128
|
84 |
-
ch_mult: [1, 2, 4, 4]
|
85 |
-
num_res_blocks: 2
|
86 |
-
attn_resolutions: []
|
87 |
-
dropout: 0.0
|
88 |
-
lossconfig:
|
89 |
-
target: torch.nn.Identity
|
90 |
-
|
91 |
-
- input_key: cond_aug
|
92 |
-
is_trainable: False
|
93 |
-
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
94 |
-
params:
|
95 |
-
outdim: 256
|
96 |
-
|
97 |
-
first_stage_config:
|
98 |
-
target: sgm.models.autoencoder.AutoencoderKL
|
99 |
-
params:
|
100 |
-
embed_dim: 4
|
101 |
-
monitor: val/rec_loss
|
102 |
-
ddconfig:
|
103 |
-
attn_type: vanilla-xformers
|
104 |
-
double_z: True
|
105 |
-
z_channels: 4
|
106 |
-
resolution: 256
|
107 |
-
in_channels: 3
|
108 |
-
out_ch: 3
|
109 |
-
ch: 128
|
110 |
-
ch_mult: [1, 2, 4, 4]
|
111 |
-
num_res_blocks: 2
|
112 |
-
attn_resolutions: []
|
113 |
-
dropout: 0.0
|
114 |
-
lossconfig:
|
115 |
-
target: torch.nn.Identity
|
116 |
-
|
117 |
-
sampler_config:
|
118 |
-
target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
|
119 |
-
params:
|
120 |
-
discretization_config:
|
121 |
-
target: sgm.modules.diffusionmodules.discretizer.EDMDiscretization
|
122 |
-
params:
|
123 |
-
sigma_max: 700.0
|
124 |
-
|
125 |
-
guider_config:
|
126 |
-
target: sgm.modules.diffusionmodules.guiders.LinearPredictionGuider
|
127 |
-
params:
|
128 |
-
max_scale: 2.5
|
129 |
-
min_scale: 1.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scripts/sampling/configs/svd_xt.yaml
DELETED
@@ -1,146 +0,0 @@
|
|
1 |
-
model:
|
2 |
-
target: sgm.models.diffusion.DiffusionEngine
|
3 |
-
params:
|
4 |
-
scale_factor: 0.18215
|
5 |
-
disable_first_stage_autocast: True
|
6 |
-
ckpt_path: checkpoints/svd_xt.safetensors
|
7 |
-
|
8 |
-
denoiser_config:
|
9 |
-
target: sgm.modules.diffusionmodules.denoiser.Denoiser
|
10 |
-
params:
|
11 |
-
scaling_config:
|
12 |
-
target: sgm.modules.diffusionmodules.denoiser_scaling.VScalingWithEDMcNoise
|
13 |
-
|
14 |
-
network_config:
|
15 |
-
target: sgm.modules.diffusionmodules.video_model.VideoUNet
|
16 |
-
params:
|
17 |
-
adm_in_channels: 768
|
18 |
-
num_classes: sequential
|
19 |
-
use_checkpoint: True
|
20 |
-
in_channels: 8
|
21 |
-
out_channels: 4
|
22 |
-
model_channels: 320
|
23 |
-
attention_resolutions: [4, 2, 1]
|
24 |
-
num_res_blocks: 2
|
25 |
-
channel_mult: [1, 2, 4, 4]
|
26 |
-
num_head_channels: 64
|
27 |
-
use_linear_in_transformer: True
|
28 |
-
transformer_depth: 1
|
29 |
-
context_dim: 1024
|
30 |
-
spatial_transformer_attn_type: softmax-xformers
|
31 |
-
extra_ff_mix_layer: True
|
32 |
-
use_spatial_context: True
|
33 |
-
merge_strategy: learned_with_images
|
34 |
-
video_kernel_size: [3, 1, 1]
|
35 |
-
|
36 |
-
conditioner_config:
|
37 |
-
target: sgm.modules.GeneralConditioner
|
38 |
-
params:
|
39 |
-
emb_models:
|
40 |
-
- is_trainable: False
|
41 |
-
input_key: cond_frames_without_noise
|
42 |
-
target: sgm.modules.encoders.modules.FrozenOpenCLIPImagePredictionEmbedder
|
43 |
-
params:
|
44 |
-
n_cond_frames: 1
|
45 |
-
n_copies: 1
|
46 |
-
open_clip_embedding_config:
|
47 |
-
target: sgm.modules.encoders.modules.FrozenOpenCLIPImageEmbedder
|
48 |
-
params:
|
49 |
-
freeze: True
|
50 |
-
|
51 |
-
- input_key: fps_id
|
52 |
-
is_trainable: False
|
53 |
-
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
54 |
-
params:
|
55 |
-
outdim: 256
|
56 |
-
|
57 |
-
- input_key: motion_bucket_id
|
58 |
-
is_trainable: False
|
59 |
-
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
60 |
-
params:
|
61 |
-
outdim: 256
|
62 |
-
|
63 |
-
- input_key: cond_frames
|
64 |
-
is_trainable: False
|
65 |
-
target: sgm.modules.encoders.modules.VideoPredictionEmbedderWithEncoder
|
66 |
-
params:
|
67 |
-
disable_encoder_autocast: True
|
68 |
-
n_cond_frames: 1
|
69 |
-
n_copies: 1
|
70 |
-
is_ae: True
|
71 |
-
encoder_config:
|
72 |
-
target: sgm.models.autoencoder.AutoencoderKLModeOnly
|
73 |
-
params:
|
74 |
-
embed_dim: 4
|
75 |
-
monitor: val/rec_loss
|
76 |
-
ddconfig:
|
77 |
-
attn_type: vanilla-xformers
|
78 |
-
double_z: True
|
79 |
-
z_channels: 4
|
80 |
-
resolution: 256
|
81 |
-
in_channels: 3
|
82 |
-
out_ch: 3
|
83 |
-
ch: 128
|
84 |
-
ch_mult: [1, 2, 4, 4]
|
85 |
-
num_res_blocks: 2
|
86 |
-
attn_resolutions: []
|
87 |
-
dropout: 0.0
|
88 |
-
lossconfig:
|
89 |
-
target: torch.nn.Identity
|
90 |
-
|
91 |
-
- input_key: cond_aug
|
92 |
-
is_trainable: False
|
93 |
-
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
94 |
-
params:
|
95 |
-
outdim: 256
|
96 |
-
|
97 |
-
first_stage_config:
|
98 |
-
target: sgm.models.autoencoder.AutoencodingEngine
|
99 |
-
params:
|
100 |
-
loss_config:
|
101 |
-
target: torch.nn.Identity
|
102 |
-
regularizer_config:
|
103 |
-
target: sgm.modules.autoencoding.regularizers.DiagonalGaussianRegularizer
|
104 |
-
encoder_config:
|
105 |
-
target: sgm.modules.diffusionmodules.model.Encoder
|
106 |
-
params:
|
107 |
-
attn_type: vanilla
|
108 |
-
double_z: True
|
109 |
-
z_channels: 4
|
110 |
-
resolution: 256
|
111 |
-
in_channels: 3
|
112 |
-
out_ch: 3
|
113 |
-
ch: 128
|
114 |
-
ch_mult: [1, 2, 4, 4]
|
115 |
-
num_res_blocks: 2
|
116 |
-
attn_resolutions: []
|
117 |
-
dropout: 0.0
|
118 |
-
decoder_config:
|
119 |
-
target: sgm.modules.autoencoding.temporal_ae.VideoDecoder
|
120 |
-
params:
|
121 |
-
attn_type: vanilla
|
122 |
-
double_z: True
|
123 |
-
z_channels: 4
|
124 |
-
resolution: 256
|
125 |
-
in_channels: 3
|
126 |
-
out_ch: 3
|
127 |
-
ch: 128
|
128 |
-
ch_mult: [1, 2, 4, 4]
|
129 |
-
num_res_blocks: 2
|
130 |
-
attn_resolutions: []
|
131 |
-
dropout: 0.0
|
132 |
-
video_kernel_size: [3, 1, 1]
|
133 |
-
|
134 |
-
sampler_config:
|
135 |
-
target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
|
136 |
-
params:
|
137 |
-
discretization_config:
|
138 |
-
target: sgm.modules.diffusionmodules.discretizer.EDMDiscretization
|
139 |
-
params:
|
140 |
-
sigma_max: 700.0
|
141 |
-
|
142 |
-
guider_config:
|
143 |
-
target: sgm.modules.diffusionmodules.guiders.LinearPredictionGuider
|
144 |
-
params:
|
145 |
-
max_scale: 3.0
|
146 |
-
min_scale: 1.5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scripts/sampling/configs/svd_xt_image_decoder.yaml
DELETED
@@ -1,129 +0,0 @@
|
|
1 |
-
model:
|
2 |
-
target: sgm.models.diffusion.DiffusionEngine
|
3 |
-
params:
|
4 |
-
scale_factor: 0.18215
|
5 |
-
disable_first_stage_autocast: True
|
6 |
-
ckpt_path: checkpoints/svd_xt_image_decoder.safetensors
|
7 |
-
|
8 |
-
denoiser_config:
|
9 |
-
target: sgm.modules.diffusionmodules.denoiser.Denoiser
|
10 |
-
params:
|
11 |
-
scaling_config:
|
12 |
-
target: sgm.modules.diffusionmodules.denoiser_scaling.VScalingWithEDMcNoise
|
13 |
-
|
14 |
-
network_config:
|
15 |
-
target: sgm.modules.diffusionmodules.video_model.VideoUNet
|
16 |
-
params:
|
17 |
-
adm_in_channels: 768
|
18 |
-
num_classes: sequential
|
19 |
-
use_checkpoint: True
|
20 |
-
in_channels: 8
|
21 |
-
out_channels: 4
|
22 |
-
model_channels: 320
|
23 |
-
attention_resolutions: [4, 2, 1]
|
24 |
-
num_res_blocks: 2
|
25 |
-
channel_mult: [1, 2, 4, 4]
|
26 |
-
num_head_channels: 64
|
27 |
-
use_linear_in_transformer: True
|
28 |
-
transformer_depth: 1
|
29 |
-
context_dim: 1024
|
30 |
-
spatial_transformer_attn_type: softmax-xformers
|
31 |
-
extra_ff_mix_layer: True
|
32 |
-
use_spatial_context: True
|
33 |
-
merge_strategy: learned_with_images
|
34 |
-
video_kernel_size: [3, 1, 1]
|
35 |
-
|
36 |
-
conditioner_config:
|
37 |
-
target: sgm.modules.GeneralConditioner
|
38 |
-
params:
|
39 |
-
emb_models:
|
40 |
-
- is_trainable: False
|
41 |
-
input_key: cond_frames_without_noise
|
42 |
-
target: sgm.modules.encoders.modules.FrozenOpenCLIPImagePredictionEmbedder
|
43 |
-
params:
|
44 |
-
n_cond_frames: 1
|
45 |
-
n_copies: 1
|
46 |
-
open_clip_embedding_config:
|
47 |
-
target: sgm.modules.encoders.modules.FrozenOpenCLIPImageEmbedder
|
48 |
-
params:
|
49 |
-
freeze: True
|
50 |
-
|
51 |
-
- input_key: fps_id
|
52 |
-
is_trainable: False
|
53 |
-
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
54 |
-
params:
|
55 |
-
outdim: 256
|
56 |
-
|
57 |
-
- input_key: motion_bucket_id
|
58 |
-
is_trainable: False
|
59 |
-
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
60 |
-
params:
|
61 |
-
outdim: 256
|
62 |
-
|
63 |
-
- input_key: cond_frames
|
64 |
-
is_trainable: False
|
65 |
-
target: sgm.modules.encoders.modules.VideoPredictionEmbedderWithEncoder
|
66 |
-
params:
|
67 |
-
disable_encoder_autocast: True
|
68 |
-
n_cond_frames: 1
|
69 |
-
n_copies: 1
|
70 |
-
is_ae: True
|
71 |
-
encoder_config:
|
72 |
-
target: sgm.models.autoencoder.AutoencoderKLModeOnly
|
73 |
-
params:
|
74 |
-
embed_dim: 4
|
75 |
-
monitor: val/rec_loss
|
76 |
-
ddconfig:
|
77 |
-
attn_type: vanilla-xformers
|
78 |
-
double_z: True
|
79 |
-
z_channels: 4
|
80 |
-
resolution: 256
|
81 |
-
in_channels: 3
|
82 |
-
out_ch: 3
|
83 |
-
ch: 128
|
84 |
-
ch_mult: [1, 2, 4, 4]
|
85 |
-
num_res_blocks: 2
|
86 |
-
attn_resolutions: []
|
87 |
-
dropout: 0.0
|
88 |
-
lossconfig:
|
89 |
-
target: torch.nn.Identity
|
90 |
-
|
91 |
-
- input_key: cond_aug
|
92 |
-
is_trainable: False
|
93 |
-
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
94 |
-
params:
|
95 |
-
outdim: 256
|
96 |
-
|
97 |
-
first_stage_config:
|
98 |
-
target: sgm.models.autoencoder.AutoencoderKL
|
99 |
-
params:
|
100 |
-
embed_dim: 4
|
101 |
-
monitor: val/rec_loss
|
102 |
-
ddconfig:
|
103 |
-
attn_type: vanilla-xformers
|
104 |
-
double_z: True
|
105 |
-
z_channels: 4
|
106 |
-
resolution: 256
|
107 |
-
in_channels: 3
|
108 |
-
out_ch: 3
|
109 |
-
ch: 128
|
110 |
-
ch_mult: [1, 2, 4, 4]
|
111 |
-
num_res_blocks: 2
|
112 |
-
attn_resolutions: []
|
113 |
-
dropout: 0.0
|
114 |
-
lossconfig:
|
115 |
-
target: torch.nn.Identity
|
116 |
-
|
117 |
-
sampler_config:
|
118 |
-
target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
|
119 |
-
params:
|
120 |
-
discretization_config:
|
121 |
-
target: sgm.modules.diffusionmodules.discretizer.EDMDiscretization
|
122 |
-
params:
|
123 |
-
sigma_max: 700.0
|
124 |
-
|
125 |
-
guider_config:
|
126 |
-
target: sgm.modules.diffusionmodules.guiders.LinearPredictionGuider
|
127 |
-
params:
|
128 |
-
max_scale: 3.0
|
129 |
-
min_scale: 1.5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scripts/sampling/simple_video_sample.py
DELETED
@@ -1,278 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
import os
|
3 |
-
from glob import glob
|
4 |
-
from pathlib import Path
|
5 |
-
from typing import Optional
|
6 |
-
|
7 |
-
import cv2
|
8 |
-
import numpy as np
|
9 |
-
import torch
|
10 |
-
from einops import rearrange, repeat
|
11 |
-
from fire import Fire
|
12 |
-
from omegaconf import OmegaConf
|
13 |
-
from PIL import Image
|
14 |
-
from torchvision.transforms import ToTensor
|
15 |
-
|
16 |
-
from scripts.util.detection.nsfw_and_watermark_dectection import \
|
17 |
-
DeepFloydDataFiltering
|
18 |
-
from sgm.inference.helpers import embed_watermark
|
19 |
-
from sgm.util import default, instantiate_from_config
|
20 |
-
|
21 |
-
|
22 |
-
def sample(
|
23 |
-
input_path: str = "assets/test_image.png", # Can either be image file or folder with image files
|
24 |
-
num_frames: Optional[int] = None,
|
25 |
-
num_steps: Optional[int] = None,
|
26 |
-
version: str = "svd",
|
27 |
-
fps_id: int = 6,
|
28 |
-
motion_bucket_id: int = 127,
|
29 |
-
cond_aug: float = 0.02,
|
30 |
-
seed: int = 23,
|
31 |
-
decoding_t: int = 14, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
|
32 |
-
device: str = "cuda",
|
33 |
-
output_folder: Optional[str] = None,
|
34 |
-
):
|
35 |
-
"""
|
36 |
-
Simple script to generate a single sample conditioned on an image `input_path` or multiple images, one for each
|
37 |
-
image file in folder `input_path`. If you run out of VRAM, try decreasing `decoding_t`.
|
38 |
-
"""
|
39 |
-
|
40 |
-
if version == "svd":
|
41 |
-
num_frames = default(num_frames, 14)
|
42 |
-
num_steps = default(num_steps, 25)
|
43 |
-
output_folder = default(output_folder, "outputs/simple_video_sample/svd/")
|
44 |
-
model_config = "scripts/sampling/configs/svd.yaml"
|
45 |
-
elif version == "svd_xt":
|
46 |
-
num_frames = default(num_frames, 25)
|
47 |
-
num_steps = default(num_steps, 30)
|
48 |
-
output_folder = default(output_folder, "outputs/simple_video_sample/svd_xt/")
|
49 |
-
model_config = "scripts/sampling/configs/svd_xt.yaml"
|
50 |
-
elif version == "svd_image_decoder":
|
51 |
-
num_frames = default(num_frames, 14)
|
52 |
-
num_steps = default(num_steps, 25)
|
53 |
-
output_folder = default(
|
54 |
-
output_folder, "outputs/simple_video_sample/svd_image_decoder/"
|
55 |
-
)
|
56 |
-
model_config = "scripts/sampling/configs/svd_image_decoder.yaml"
|
57 |
-
elif version == "svd_xt_image_decoder":
|
58 |
-
num_frames = default(num_frames, 25)
|
59 |
-
num_steps = default(num_steps, 30)
|
60 |
-
output_folder = default(
|
61 |
-
output_folder, "outputs/simple_video_sample/svd_xt_image_decoder/"
|
62 |
-
)
|
63 |
-
model_config = "scripts/sampling/configs/svd_xt_image_decoder.yaml"
|
64 |
-
else:
|
65 |
-
raise ValueError(f"Version {version} does not exist.")
|
66 |
-
|
67 |
-
model, filter = load_model(
|
68 |
-
model_config,
|
69 |
-
device,
|
70 |
-
num_frames,
|
71 |
-
num_steps,
|
72 |
-
)
|
73 |
-
torch.manual_seed(seed)
|
74 |
-
|
75 |
-
path = Path(input_path)
|
76 |
-
all_img_paths = []
|
77 |
-
if path.is_file():
|
78 |
-
if any([input_path.endswith(x) for x in ["jpg", "jpeg", "png"]]):
|
79 |
-
all_img_paths = [input_path]
|
80 |
-
else:
|
81 |
-
raise ValueError("Path is not valid image file.")
|
82 |
-
elif path.is_dir():
|
83 |
-
all_img_paths = sorted(
|
84 |
-
[
|
85 |
-
f
|
86 |
-
for f in path.iterdir()
|
87 |
-
if f.is_file() and f.suffix.lower() in [".jpg", ".jpeg", ".png"]
|
88 |
-
]
|
89 |
-
)
|
90 |
-
if len(all_img_paths) == 0:
|
91 |
-
raise ValueError("Folder does not contain any images.")
|
92 |
-
else:
|
93 |
-
raise ValueError
|
94 |
-
|
95 |
-
for input_img_path in all_img_paths:
|
96 |
-
with Image.open(input_img_path) as image:
|
97 |
-
if image.mode == "RGBA":
|
98 |
-
image = image.convert("RGB")
|
99 |
-
w, h = image.size
|
100 |
-
|
101 |
-
if h % 64 != 0 or w % 64 != 0:
|
102 |
-
width, height = map(lambda x: x - x % 64, (w, h))
|
103 |
-
image = image.resize((width, height))
|
104 |
-
print(
|
105 |
-
f"WARNING: Your image is of size {h}x{w} which is not divisible by 64. We are resizing to {height}x{width}!"
|
106 |
-
)
|
107 |
-
|
108 |
-
image = ToTensor()(image)
|
109 |
-
image = image * 2.0 - 1.0
|
110 |
-
|
111 |
-
image = image.unsqueeze(0).to(device)
|
112 |
-
H, W = image.shape[2:]
|
113 |
-
assert image.shape[1] == 3
|
114 |
-
F = 8
|
115 |
-
C = 4
|
116 |
-
shape = (num_frames, C, H // F, W // F)
|
117 |
-
if (H, W) != (576, 1024):
|
118 |
-
print(
|
119 |
-
"WARNING: The conditioning frame you provided is not 576x1024. This leads to suboptimal performance as model was only trained on 576x1024. Consider increasing `cond_aug`."
|
120 |
-
)
|
121 |
-
if motion_bucket_id > 255:
|
122 |
-
print(
|
123 |
-
"WARNING: High motion bucket! This may lead to suboptimal performance."
|
124 |
-
)
|
125 |
-
|
126 |
-
if fps_id < 5:
|
127 |
-
print("WARNING: Small fps value! This may lead to suboptimal performance.")
|
128 |
-
|
129 |
-
if fps_id > 30:
|
130 |
-
print("WARNING: Large fps value! This may lead to suboptimal performance.")
|
131 |
-
|
132 |
-
value_dict = {}
|
133 |
-
value_dict["motion_bucket_id"] = motion_bucket_id
|
134 |
-
value_dict["fps_id"] = fps_id
|
135 |
-
value_dict["cond_aug"] = cond_aug
|
136 |
-
value_dict["cond_frames_without_noise"] = image
|
137 |
-
value_dict["cond_frames"] = image + cond_aug * torch.randn_like(image)
|
138 |
-
value_dict["cond_aug"] = cond_aug
|
139 |
-
|
140 |
-
with torch.no_grad():
|
141 |
-
with torch.autocast(device):
|
142 |
-
batch, batch_uc = get_batch(
|
143 |
-
get_unique_embedder_keys_from_conditioner(model.conditioner),
|
144 |
-
value_dict,
|
145 |
-
[1, num_frames],
|
146 |
-
T=num_frames,
|
147 |
-
device=device,
|
148 |
-
)
|
149 |
-
c, uc = model.conditioner.get_unconditional_conditioning(
|
150 |
-
batch,
|
151 |
-
batch_uc=batch_uc,
|
152 |
-
force_uc_zero_embeddings=[
|
153 |
-
"cond_frames",
|
154 |
-
"cond_frames_without_noise",
|
155 |
-
],
|
156 |
-
)
|
157 |
-
|
158 |
-
for k in ["crossattn", "concat"]:
|
159 |
-
uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames)
|
160 |
-
uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames)
|
161 |
-
c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames)
|
162 |
-
c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames)
|
163 |
-
|
164 |
-
randn = torch.randn(shape, device=device)
|
165 |
-
|
166 |
-
additional_model_inputs = {}
|
167 |
-
additional_model_inputs["image_only_indicator"] = torch.zeros(
|
168 |
-
2, num_frames
|
169 |
-
).to(device)
|
170 |
-
additional_model_inputs["num_video_frames"] = batch["num_video_frames"]
|
171 |
-
|
172 |
-
def denoiser(input, sigma, c):
|
173 |
-
return model.denoiser(
|
174 |
-
model.model, input, sigma, c, **additional_model_inputs
|
175 |
-
)
|
176 |
-
|
177 |
-
samples_z = model.sampler(denoiser, randn, cond=c, uc=uc)
|
178 |
-
model.en_and_decode_n_samples_a_time = decoding_t
|
179 |
-
samples_x = model.decode_first_stage(samples_z)
|
180 |
-
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
|
181 |
-
|
182 |
-
os.makedirs(output_folder, exist_ok=True)
|
183 |
-
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
184 |
-
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
185 |
-
writer = cv2.VideoWriter(
|
186 |
-
video_path,
|
187 |
-
cv2.VideoWriter_fourcc(*"MP4V"),
|
188 |
-
fps_id + 1,
|
189 |
-
(samples.shape[-1], samples.shape[-2]),
|
190 |
-
)
|
191 |
-
|
192 |
-
samples = embed_watermark(samples)
|
193 |
-
samples = filter(samples)
|
194 |
-
vid = (
|
195 |
-
(rearrange(samples, "t c h w -> t h w c") * 255)
|
196 |
-
.cpu()
|
197 |
-
.numpy()
|
198 |
-
.astype(np.uint8)
|
199 |
-
)
|
200 |
-
for frame in vid:
|
201 |
-
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
202 |
-
writer.write(frame)
|
203 |
-
writer.release()
|
204 |
-
|
205 |
-
|
206 |
-
def get_unique_embedder_keys_from_conditioner(conditioner):
|
207 |
-
return list(set([x.input_key for x in conditioner.embedders]))
|
208 |
-
|
209 |
-
|
210 |
-
def get_batch(keys, value_dict, N, T, device):
|
211 |
-
batch = {}
|
212 |
-
batch_uc = {}
|
213 |
-
|
214 |
-
for key in keys:
|
215 |
-
if key == "fps_id":
|
216 |
-
batch[key] = (
|
217 |
-
torch.tensor([value_dict["fps_id"]])
|
218 |
-
.to(device)
|
219 |
-
.repeat(int(math.prod(N)))
|
220 |
-
)
|
221 |
-
elif key == "motion_bucket_id":
|
222 |
-
batch[key] = (
|
223 |
-
torch.tensor([value_dict["motion_bucket_id"]])
|
224 |
-
.to(device)
|
225 |
-
.repeat(int(math.prod(N)))
|
226 |
-
)
|
227 |
-
elif key == "cond_aug":
|
228 |
-
batch[key] = repeat(
|
229 |
-
torch.tensor([value_dict["cond_aug"]]).to(device),
|
230 |
-
"1 -> b",
|
231 |
-
b=math.prod(N),
|
232 |
-
)
|
233 |
-
elif key == "cond_frames":
|
234 |
-
batch[key] = repeat(value_dict["cond_frames"], "1 ... -> b ...", b=N[0])
|
235 |
-
elif key == "cond_frames_without_noise":
|
236 |
-
batch[key] = repeat(
|
237 |
-
value_dict["cond_frames_without_noise"], "1 ... -> b ...", b=N[0]
|
238 |
-
)
|
239 |
-
else:
|
240 |
-
batch[key] = value_dict[key]
|
241 |
-
|
242 |
-
if T is not None:
|
243 |
-
batch["num_video_frames"] = T
|
244 |
-
|
245 |
-
for key in batch.keys():
|
246 |
-
if key not in batch_uc and isinstance(batch[key], torch.Tensor):
|
247 |
-
batch_uc[key] = torch.clone(batch[key])
|
248 |
-
return batch, batch_uc
|
249 |
-
|
250 |
-
|
251 |
-
def load_model(
|
252 |
-
config: str,
|
253 |
-
device: str,
|
254 |
-
num_frames: int,
|
255 |
-
num_steps: int,
|
256 |
-
):
|
257 |
-
config = OmegaConf.load(config)
|
258 |
-
if device == "cuda":
|
259 |
-
config.model.params.conditioner_config.params.emb_models[
|
260 |
-
0
|
261 |
-
].params.open_clip_embedding_config.params.init_device = device
|
262 |
-
|
263 |
-
config.model.params.sampler_config.params.num_steps = num_steps
|
264 |
-
config.model.params.sampler_config.params.guider_config.params.num_frames = (
|
265 |
-
num_frames
|
266 |
-
)
|
267 |
-
if device == "cuda":
|
268 |
-
with torch.device(device):
|
269 |
-
model = instantiate_from_config(config.model).to(device).eval()
|
270 |
-
else:
|
271 |
-
model = instantiate_from_config(config.model).to(device).eval()
|
272 |
-
|
273 |
-
filter = DeepFloydDataFiltering(verbose=False, device=device)
|
274 |
-
return model, filter
|
275 |
-
|
276 |
-
|
277 |
-
if __name__ == "__main__":
|
278 |
-
Fire(sample)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scripts/tests/attention.py
DELETED
@@ -1,319 +0,0 @@
|
|
1 |
-
import einops
|
2 |
-
import torch
|
3 |
-
import torch.nn.functional as F
|
4 |
-
import torch.utils.benchmark as benchmark
|
5 |
-
from torch.backends.cuda import SDPBackend
|
6 |
-
|
7 |
-
from sgm.modules.attention import BasicTransformerBlock, SpatialTransformer
|
8 |
-
|
9 |
-
|
10 |
-
def benchmark_attn():
|
11 |
-
# Lets define a helpful benchmarking function:
|
12 |
-
# https://pytorch.org/tutorials/intermediate/scaled_dot_product_attention_tutorial.html
|
13 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
-
|
15 |
-
def benchmark_torch_function_in_microseconds(f, *args, **kwargs):
|
16 |
-
t0 = benchmark.Timer(
|
17 |
-
stmt="f(*args, **kwargs)", globals={"args": args, "kwargs": kwargs, "f": f}
|
18 |
-
)
|
19 |
-
return t0.blocked_autorange().mean * 1e6
|
20 |
-
|
21 |
-
# Lets define the hyper-parameters of our input
|
22 |
-
batch_size = 32
|
23 |
-
max_sequence_len = 1024
|
24 |
-
num_heads = 32
|
25 |
-
embed_dimension = 32
|
26 |
-
|
27 |
-
dtype = torch.float16
|
28 |
-
|
29 |
-
query = torch.rand(
|
30 |
-
batch_size,
|
31 |
-
num_heads,
|
32 |
-
max_sequence_len,
|
33 |
-
embed_dimension,
|
34 |
-
device=device,
|
35 |
-
dtype=dtype,
|
36 |
-
)
|
37 |
-
key = torch.rand(
|
38 |
-
batch_size,
|
39 |
-
num_heads,
|
40 |
-
max_sequence_len,
|
41 |
-
embed_dimension,
|
42 |
-
device=device,
|
43 |
-
dtype=dtype,
|
44 |
-
)
|
45 |
-
value = torch.rand(
|
46 |
-
batch_size,
|
47 |
-
num_heads,
|
48 |
-
max_sequence_len,
|
49 |
-
embed_dimension,
|
50 |
-
device=device,
|
51 |
-
dtype=dtype,
|
52 |
-
)
|
53 |
-
|
54 |
-
print(f"q/k/v shape:", query.shape, key.shape, value.shape)
|
55 |
-
|
56 |
-
# Lets explore the speed of each of the 3 implementations
|
57 |
-
from torch.backends.cuda import SDPBackend, sdp_kernel
|
58 |
-
|
59 |
-
# Helpful arguments mapper
|
60 |
-
backend_map = {
|
61 |
-
SDPBackend.MATH: {
|
62 |
-
"enable_math": True,
|
63 |
-
"enable_flash": False,
|
64 |
-
"enable_mem_efficient": False,
|
65 |
-
},
|
66 |
-
SDPBackend.FLASH_ATTENTION: {
|
67 |
-
"enable_math": False,
|
68 |
-
"enable_flash": True,
|
69 |
-
"enable_mem_efficient": False,
|
70 |
-
},
|
71 |
-
SDPBackend.EFFICIENT_ATTENTION: {
|
72 |
-
"enable_math": False,
|
73 |
-
"enable_flash": False,
|
74 |
-
"enable_mem_efficient": True,
|
75 |
-
},
|
76 |
-
}
|
77 |
-
|
78 |
-
from torch.profiler import ProfilerActivity, profile, record_function
|
79 |
-
|
80 |
-
activities = [ProfilerActivity.CPU, ProfilerActivity.CUDA]
|
81 |
-
|
82 |
-
print(
|
83 |
-
f"The default implementation runs in {benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value):.3f} microseconds"
|
84 |
-
)
|
85 |
-
with profile(
|
86 |
-
activities=activities, record_shapes=False, profile_memory=True
|
87 |
-
) as prof:
|
88 |
-
with record_function("Default detailed stats"):
|
89 |
-
for _ in range(25):
|
90 |
-
o = F.scaled_dot_product_attention(query, key, value)
|
91 |
-
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
|
92 |
-
|
93 |
-
print(
|
94 |
-
f"The math implementation runs in {benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value):.3f} microseconds"
|
95 |
-
)
|
96 |
-
with sdp_kernel(**backend_map[SDPBackend.MATH]):
|
97 |
-
with profile(
|
98 |
-
activities=activities, record_shapes=False, profile_memory=True
|
99 |
-
) as prof:
|
100 |
-
with record_function("Math implmentation stats"):
|
101 |
-
for _ in range(25):
|
102 |
-
o = F.scaled_dot_product_attention(query, key, value)
|
103 |
-
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
|
104 |
-
|
105 |
-
with sdp_kernel(**backend_map[SDPBackend.FLASH_ATTENTION]):
|
106 |
-
try:
|
107 |
-
print(
|
108 |
-
f"The flash attention implementation runs in {benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value):.3f} microseconds"
|
109 |
-
)
|
110 |
-
except RuntimeError:
|
111 |
-
print("FlashAttention is not supported. See warnings for reasons.")
|
112 |
-
with profile(
|
113 |
-
activities=activities, record_shapes=False, profile_memory=True
|
114 |
-
) as prof:
|
115 |
-
with record_function("FlashAttention stats"):
|
116 |
-
for _ in range(25):
|
117 |
-
o = F.scaled_dot_product_attention(query, key, value)
|
118 |
-
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
|
119 |
-
|
120 |
-
with sdp_kernel(**backend_map[SDPBackend.EFFICIENT_ATTENTION]):
|
121 |
-
try:
|
122 |
-
print(
|
123 |
-
f"The memory efficient implementation runs in {benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value):.3f} microseconds"
|
124 |
-
)
|
125 |
-
except RuntimeError:
|
126 |
-
print("EfficientAttention is not supported. See warnings for reasons.")
|
127 |
-
with profile(
|
128 |
-
activities=activities, record_shapes=False, profile_memory=True
|
129 |
-
) as prof:
|
130 |
-
with record_function("EfficientAttention stats"):
|
131 |
-
for _ in range(25):
|
132 |
-
o = F.scaled_dot_product_attention(query, key, value)
|
133 |
-
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
|
134 |
-
|
135 |
-
|
136 |
-
def run_model(model, x, context):
|
137 |
-
return model(x, context)
|
138 |
-
|
139 |
-
|
140 |
-
def benchmark_transformer_blocks():
|
141 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
142 |
-
import torch.utils.benchmark as benchmark
|
143 |
-
|
144 |
-
def benchmark_torch_function_in_microseconds(f, *args, **kwargs):
|
145 |
-
t0 = benchmark.Timer(
|
146 |
-
stmt="f(*args, **kwargs)", globals={"args": args, "kwargs": kwargs, "f": f}
|
147 |
-
)
|
148 |
-
return t0.blocked_autorange().mean * 1e6
|
149 |
-
|
150 |
-
checkpoint = True
|
151 |
-
compile = False
|
152 |
-
|
153 |
-
batch_size = 32
|
154 |
-
h, w = 64, 64
|
155 |
-
context_len = 77
|
156 |
-
embed_dimension = 1024
|
157 |
-
context_dim = 1024
|
158 |
-
d_head = 64
|
159 |
-
|
160 |
-
transformer_depth = 4
|
161 |
-
|
162 |
-
n_heads = embed_dimension // d_head
|
163 |
-
|
164 |
-
dtype = torch.float16
|
165 |
-
|
166 |
-
model_native = SpatialTransformer(
|
167 |
-
embed_dimension,
|
168 |
-
n_heads,
|
169 |
-
d_head,
|
170 |
-
context_dim=context_dim,
|
171 |
-
use_linear=True,
|
172 |
-
use_checkpoint=checkpoint,
|
173 |
-
attn_type="softmax",
|
174 |
-
depth=transformer_depth,
|
175 |
-
sdp_backend=SDPBackend.FLASH_ATTENTION,
|
176 |
-
).to(device)
|
177 |
-
model_efficient_attn = SpatialTransformer(
|
178 |
-
embed_dimension,
|
179 |
-
n_heads,
|
180 |
-
d_head,
|
181 |
-
context_dim=context_dim,
|
182 |
-
use_linear=True,
|
183 |
-
depth=transformer_depth,
|
184 |
-
use_checkpoint=checkpoint,
|
185 |
-
attn_type="softmax-xformers",
|
186 |
-
).to(device)
|
187 |
-
if not checkpoint and compile:
|
188 |
-
print("compiling models")
|
189 |
-
model_native = torch.compile(model_native)
|
190 |
-
model_efficient_attn = torch.compile(model_efficient_attn)
|
191 |
-
|
192 |
-
x = torch.rand(batch_size, embed_dimension, h, w, device=device, dtype=dtype)
|
193 |
-
c = torch.rand(batch_size, context_len, context_dim, device=device, dtype=dtype)
|
194 |
-
|
195 |
-
from torch.profiler import ProfilerActivity, profile, record_function
|
196 |
-
|
197 |
-
activities = [ProfilerActivity.CPU, ProfilerActivity.CUDA]
|
198 |
-
|
199 |
-
with torch.autocast("cuda"):
|
200 |
-
print(
|
201 |
-
f"The native model runs in {benchmark_torch_function_in_microseconds(model_native.forward, x, c):.3f} microseconds"
|
202 |
-
)
|
203 |
-
print(
|
204 |
-
f"The efficientattn model runs in {benchmark_torch_function_in_microseconds(model_efficient_attn.forward, x, c):.3f} microseconds"
|
205 |
-
)
|
206 |
-
|
207 |
-
print(75 * "+")
|
208 |
-
print("NATIVE")
|
209 |
-
print(75 * "+")
|
210 |
-
torch.cuda.reset_peak_memory_stats()
|
211 |
-
with profile(
|
212 |
-
activities=activities, record_shapes=False, profile_memory=True
|
213 |
-
) as prof:
|
214 |
-
with record_function("NativeAttention stats"):
|
215 |
-
for _ in range(25):
|
216 |
-
model_native(x, c)
|
217 |
-
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
|
218 |
-
print(torch.cuda.max_memory_allocated() * 1e-9, "GB used by native block")
|
219 |
-
|
220 |
-
print(75 * "+")
|
221 |
-
print("Xformers")
|
222 |
-
print(75 * "+")
|
223 |
-
torch.cuda.reset_peak_memory_stats()
|
224 |
-
with profile(
|
225 |
-
activities=activities, record_shapes=False, profile_memory=True
|
226 |
-
) as prof:
|
227 |
-
with record_function("xformers stats"):
|
228 |
-
for _ in range(25):
|
229 |
-
model_efficient_attn(x, c)
|
230 |
-
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
|
231 |
-
print(torch.cuda.max_memory_allocated() * 1e-9, "GB used by xformers block")
|
232 |
-
|
233 |
-
|
234 |
-
def test01():
|
235 |
-
# conv1x1 vs linear
|
236 |
-
from sgm.util import count_params
|
237 |
-
|
238 |
-
conv = torch.nn.Conv2d(3, 32, kernel_size=1).cuda()
|
239 |
-
print(count_params(conv))
|
240 |
-
linear = torch.nn.Linear(3, 32).cuda()
|
241 |
-
print(count_params(linear))
|
242 |
-
|
243 |
-
print(conv.weight.shape)
|
244 |
-
|
245 |
-
# use same initialization
|
246 |
-
linear.weight = torch.nn.Parameter(conv.weight.squeeze(-1).squeeze(-1))
|
247 |
-
linear.bias = torch.nn.Parameter(conv.bias)
|
248 |
-
|
249 |
-
print(linear.weight.shape)
|
250 |
-
|
251 |
-
x = torch.randn(11, 3, 64, 64).cuda()
|
252 |
-
|
253 |
-
xr = einops.rearrange(x, "b c h w -> b (h w) c").contiguous()
|
254 |
-
print(xr.shape)
|
255 |
-
out_linear = linear(xr)
|
256 |
-
print(out_linear.mean(), out_linear.shape)
|
257 |
-
|
258 |
-
out_conv = conv(x)
|
259 |
-
print(out_conv.mean(), out_conv.shape)
|
260 |
-
print("done with test01.\n")
|
261 |
-
|
262 |
-
|
263 |
-
def test02():
|
264 |
-
# try cosine flash attention
|
265 |
-
import time
|
266 |
-
|
267 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
268 |
-
torch.backends.cudnn.allow_tf32 = True
|
269 |
-
torch.backends.cudnn.benchmark = True
|
270 |
-
print("testing cosine flash attention...")
|
271 |
-
DIM = 1024
|
272 |
-
SEQLEN = 4096
|
273 |
-
BS = 16
|
274 |
-
|
275 |
-
print(" softmax (vanilla) first...")
|
276 |
-
model = BasicTransformerBlock(
|
277 |
-
dim=DIM,
|
278 |
-
n_heads=16,
|
279 |
-
d_head=64,
|
280 |
-
dropout=0.0,
|
281 |
-
context_dim=None,
|
282 |
-
attn_mode="softmax",
|
283 |
-
).cuda()
|
284 |
-
try:
|
285 |
-
x = torch.randn(BS, SEQLEN, DIM).cuda()
|
286 |
-
tic = time.time()
|
287 |
-
y = model(x)
|
288 |
-
toc = time.time()
|
289 |
-
print(y.shape, toc - tic)
|
290 |
-
except RuntimeError as e:
|
291 |
-
# likely oom
|
292 |
-
print(str(e))
|
293 |
-
|
294 |
-
print("\n now flash-cosine...")
|
295 |
-
model = BasicTransformerBlock(
|
296 |
-
dim=DIM,
|
297 |
-
n_heads=16,
|
298 |
-
d_head=64,
|
299 |
-
dropout=0.0,
|
300 |
-
context_dim=None,
|
301 |
-
attn_mode="flash-cosine",
|
302 |
-
).cuda()
|
303 |
-
x = torch.randn(BS, SEQLEN, DIM).cuda()
|
304 |
-
tic = time.time()
|
305 |
-
y = model(x)
|
306 |
-
toc = time.time()
|
307 |
-
print(y.shape, toc - tic)
|
308 |
-
print("done with test02.\n")
|
309 |
-
|
310 |
-
|
311 |
-
if __name__ == "__main__":
|
312 |
-
# test01()
|
313 |
-
# test02()
|
314 |
-
# test03()
|
315 |
-
|
316 |
-
# benchmark_attn()
|
317 |
-
benchmark_transformer_blocks()
|
318 |
-
|
319 |
-
print("done.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scripts/util/__init__.py
DELETED
File without changes
|
scripts/util/detection/__init__.py
DELETED
File without changes
|
scripts/util/detection/nsfw_and_watermark_dectection.py
DELETED
@@ -1,110 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
-
import clip
|
4 |
-
import numpy as np
|
5 |
-
import torch
|
6 |
-
import torchvision.transforms as T
|
7 |
-
from PIL import Image
|
8 |
-
|
9 |
-
RESOURCES_ROOT = "scripts/util/detection/"
|
10 |
-
|
11 |
-
|
12 |
-
def predict_proba(X, weights, biases):
|
13 |
-
logits = X @ weights.T + biases
|
14 |
-
proba = np.where(
|
15 |
-
logits >= 0, 1 / (1 + np.exp(-logits)), np.exp(logits) / (1 + np.exp(logits))
|
16 |
-
)
|
17 |
-
return proba.T
|
18 |
-
|
19 |
-
|
20 |
-
def load_model_weights(path: str):
|
21 |
-
model_weights = np.load(path)
|
22 |
-
return model_weights["weights"], model_weights["biases"]
|
23 |
-
|
24 |
-
|
25 |
-
def clip_process_images(images: torch.Tensor) -> torch.Tensor:
|
26 |
-
min_size = min(images.shape[-2:])
|
27 |
-
return T.Compose(
|
28 |
-
[
|
29 |
-
T.CenterCrop(min_size), # TODO: this might affect the watermark, check this
|
30 |
-
T.Resize(224, interpolation=T.InterpolationMode.BICUBIC, antialias=True),
|
31 |
-
T.Normalize(
|
32 |
-
(0.48145466, 0.4578275, 0.40821073),
|
33 |
-
(0.26862954, 0.26130258, 0.27577711),
|
34 |
-
),
|
35 |
-
]
|
36 |
-
)(images)
|
37 |
-
|
38 |
-
|
39 |
-
class DeepFloydDataFiltering(object):
|
40 |
-
def __init__(
|
41 |
-
self, verbose: bool = False, device: torch.device = torch.device("cpu")
|
42 |
-
):
|
43 |
-
super().__init__()
|
44 |
-
self.verbose = verbose
|
45 |
-
self._device = None
|
46 |
-
self.clip_model, _ = clip.load("ViT-L/14", device=device)
|
47 |
-
self.clip_model.eval()
|
48 |
-
|
49 |
-
self.cpu_w_weights, self.cpu_w_biases = load_model_weights(
|
50 |
-
os.path.join(RESOURCES_ROOT, "w_head_v1.npz")
|
51 |
-
)
|
52 |
-
self.cpu_p_weights, self.cpu_p_biases = load_model_weights(
|
53 |
-
os.path.join(RESOURCES_ROOT, "p_head_v1.npz")
|
54 |
-
)
|
55 |
-
self.w_threshold, self.p_threshold = 0.5, 0.5
|
56 |
-
|
57 |
-
@torch.inference_mode()
|
58 |
-
def __call__(self, images: torch.Tensor) -> torch.Tensor:
|
59 |
-
imgs = clip_process_images(images)
|
60 |
-
if self._device is None:
|
61 |
-
self._device = next(p for p in self.clip_model.parameters()).device
|
62 |
-
image_features = self.clip_model.encode_image(imgs.to(self._device))
|
63 |
-
image_features = image_features.detach().cpu().numpy().astype(np.float16)
|
64 |
-
p_pred = predict_proba(image_features, self.cpu_p_weights, self.cpu_p_biases)
|
65 |
-
w_pred = predict_proba(image_features, self.cpu_w_weights, self.cpu_w_biases)
|
66 |
-
print(f"p_pred = {p_pred}, w_pred = {w_pred}") if self.verbose else None
|
67 |
-
query = p_pred > self.p_threshold
|
68 |
-
if query.sum() > 0:
|
69 |
-
print(f"Hit for p_threshold: {p_pred}") if self.verbose else None
|
70 |
-
images[query] = T.GaussianBlur(99, sigma=(100.0, 100.0))(images[query])
|
71 |
-
query = w_pred > self.w_threshold
|
72 |
-
if query.sum() > 0:
|
73 |
-
print(f"Hit for w_threshold: {w_pred}") if self.verbose else None
|
74 |
-
images[query] = T.GaussianBlur(99, sigma=(100.0, 100.0))(images[query])
|
75 |
-
return images
|
76 |
-
|
77 |
-
|
78 |
-
def load_img(path: str) -> torch.Tensor:
|
79 |
-
image = Image.open(path)
|
80 |
-
if not image.mode == "RGB":
|
81 |
-
image = image.convert("RGB")
|
82 |
-
image_transforms = T.Compose(
|
83 |
-
[
|
84 |
-
T.ToTensor(),
|
85 |
-
]
|
86 |
-
)
|
87 |
-
return image_transforms(image)[None, ...]
|
88 |
-
|
89 |
-
|
90 |
-
def test(root):
|
91 |
-
from einops import rearrange
|
92 |
-
|
93 |
-
filter = DeepFloydDataFiltering(verbose=True)
|
94 |
-
for p in os.listdir((root)):
|
95 |
-
print(f"running on {p}...")
|
96 |
-
img = load_img(os.path.join(root, p))
|
97 |
-
filtered_img = filter(img)
|
98 |
-
filtered_img = rearrange(
|
99 |
-
255.0 * (filtered_img.numpy())[0], "c h w -> h w c"
|
100 |
-
).astype(np.uint8)
|
101 |
-
Image.fromarray(filtered_img).save(
|
102 |
-
os.path.join(root, f"{os.path.splitext(p)[0]}-filtered.jpg")
|
103 |
-
)
|
104 |
-
|
105 |
-
|
106 |
-
if __name__ == "__main__":
|
107 |
-
import fire
|
108 |
-
|
109 |
-
fire.Fire(test)
|
110 |
-
print("done.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scripts/util/detection/p_head_v1.npz
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:b4653a64d5f85d8d4c5f6c5ec175f1c5c5e37db8f38d39b2ed8b5979da7fdc76
|
3 |
-
size 3588
|
|
|
|
|
|
|
|
scripts/util/detection/w_head_v1.npz
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:b6af23687aa347073e692025f405ccc48c14aadc5dbe775b3312041006d496d1
|
3 |
-
size 3588
|
|
|
|
|
|
|
|