Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
a7729a1
1
Parent(s):
f3f18e3
Delete simple_video_sample.py
Browse files- simple_video_sample.py +0 -278
simple_video_sample.py
DELETED
@@ -1,278 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
import os
|
3 |
-
from glob import glob
|
4 |
-
from pathlib import Path
|
5 |
-
from typing import Optional
|
6 |
-
|
7 |
-
import cv2
|
8 |
-
import numpy as np
|
9 |
-
import torch
|
10 |
-
from einops import rearrange, repeat
|
11 |
-
from fire import Fire
|
12 |
-
from omegaconf import OmegaConf
|
13 |
-
from PIL import Image
|
14 |
-
from torchvision.transforms import ToTensor
|
15 |
-
|
16 |
-
from scripts.util.detection.nsfw_and_watermark_dectection import \
|
17 |
-
DeepFloydDataFiltering
|
18 |
-
from sgm.inference.helpers import embed_watermark
|
19 |
-
from sgm.util import default, instantiate_from_config
|
20 |
-
|
21 |
-
|
22 |
-
def sample(
|
23 |
-
input_path: str = "assets/test_image.png", # Can either be image file or folder with image files
|
24 |
-
num_frames: Optional[int] = None,
|
25 |
-
num_steps: Optional[int] = None,
|
26 |
-
version: str = "svd",
|
27 |
-
fps_id: int = 6,
|
28 |
-
motion_bucket_id: int = 127,
|
29 |
-
cond_aug: float = 0.02,
|
30 |
-
seed: int = 23,
|
31 |
-
decoding_t: int = 14, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
|
32 |
-
device: str = "cuda",
|
33 |
-
output_folder: Optional[str] = None,
|
34 |
-
):
|
35 |
-
"""
|
36 |
-
Simple script to generate a single sample conditioned on an image `input_path` or multiple images, one for each
|
37 |
-
image file in folder `input_path`. If you run out of VRAM, try decreasing `decoding_t`.
|
38 |
-
"""
|
39 |
-
|
40 |
-
if version == "svd":
|
41 |
-
num_frames = default(num_frames, 14)
|
42 |
-
num_steps = default(num_steps, 25)
|
43 |
-
output_folder = default(output_folder, "outputs/simple_video_sample/svd/")
|
44 |
-
model_config = "scripts/sampling/configs/svd.yaml"
|
45 |
-
elif version == "svd_xt":
|
46 |
-
num_frames = default(num_frames, 25)
|
47 |
-
num_steps = default(num_steps, 30)
|
48 |
-
output_folder = default(output_folder, "outputs/simple_video_sample/svd_xt/")
|
49 |
-
model_config = "scripts/sampling/configs/svd_xt.yaml"
|
50 |
-
elif version == "svd_image_decoder":
|
51 |
-
num_frames = default(num_frames, 14)
|
52 |
-
num_steps = default(num_steps, 25)
|
53 |
-
output_folder = default(
|
54 |
-
output_folder, "outputs/simple_video_sample/svd_image_decoder/"
|
55 |
-
)
|
56 |
-
model_config = "scripts/sampling/configs/svd_image_decoder.yaml"
|
57 |
-
elif version == "svd_xt_image_decoder":
|
58 |
-
num_frames = default(num_frames, 25)
|
59 |
-
num_steps = default(num_steps, 30)
|
60 |
-
output_folder = default(
|
61 |
-
output_folder, "outputs/simple_video_sample/svd_xt_image_decoder/"
|
62 |
-
)
|
63 |
-
model_config = "scripts/sampling/configs/svd_xt_image_decoder.yaml"
|
64 |
-
else:
|
65 |
-
raise ValueError(f"Version {version} does not exist.")
|
66 |
-
|
67 |
-
model, filter = load_model(
|
68 |
-
model_config,
|
69 |
-
device,
|
70 |
-
num_frames,
|
71 |
-
num_steps,
|
72 |
-
)
|
73 |
-
torch.manual_seed(seed)
|
74 |
-
|
75 |
-
path = Path(input_path)
|
76 |
-
all_img_paths = []
|
77 |
-
if path.is_file():
|
78 |
-
if any([input_path.endswith(x) for x in ["jpg", "jpeg", "png"]]):
|
79 |
-
all_img_paths = [input_path]
|
80 |
-
else:
|
81 |
-
raise ValueError("Path is not valid image file.")
|
82 |
-
elif path.is_dir():
|
83 |
-
all_img_paths = sorted(
|
84 |
-
[
|
85 |
-
f
|
86 |
-
for f in path.iterdir()
|
87 |
-
if f.is_file() and f.suffix.lower() in [".jpg", ".jpeg", ".png"]
|
88 |
-
]
|
89 |
-
)
|
90 |
-
if len(all_img_paths) == 0:
|
91 |
-
raise ValueError("Folder does not contain any images.")
|
92 |
-
else:
|
93 |
-
raise ValueError
|
94 |
-
|
95 |
-
for input_img_path in all_img_paths:
|
96 |
-
with Image.open(input_img_path) as image:
|
97 |
-
if image.mode == "RGBA":
|
98 |
-
image = image.convert("RGB")
|
99 |
-
w, h = image.size
|
100 |
-
|
101 |
-
if h % 64 != 0 or w % 64 != 0:
|
102 |
-
width, height = map(lambda x: x - x % 64, (w, h))
|
103 |
-
image = image.resize((width, height))
|
104 |
-
print(
|
105 |
-
f"WARNING: Your image is of size {h}x{w} which is not divisible by 64. We are resizing to {height}x{width}!"
|
106 |
-
)
|
107 |
-
|
108 |
-
image = ToTensor()(image)
|
109 |
-
image = image * 2.0 - 1.0
|
110 |
-
|
111 |
-
image = image.unsqueeze(0).to(device)
|
112 |
-
H, W = image.shape[2:]
|
113 |
-
assert image.shape[1] == 3
|
114 |
-
F = 8
|
115 |
-
C = 4
|
116 |
-
shape = (num_frames, C, H // F, W // F)
|
117 |
-
if (H, W) != (576, 1024):
|
118 |
-
print(
|
119 |
-
"WARNING: The conditioning frame you provided is not 576x1024. This leads to suboptimal performance as model was only trained on 576x1024. Consider increasing `cond_aug`."
|
120 |
-
)
|
121 |
-
if motion_bucket_id > 255:
|
122 |
-
print(
|
123 |
-
"WARNING: High motion bucket! This may lead to suboptimal performance."
|
124 |
-
)
|
125 |
-
|
126 |
-
if fps_id < 5:
|
127 |
-
print("WARNING: Small fps value! This may lead to suboptimal performance.")
|
128 |
-
|
129 |
-
if fps_id > 30:
|
130 |
-
print("WARNING: Large fps value! This may lead to suboptimal performance.")
|
131 |
-
|
132 |
-
value_dict = {}
|
133 |
-
value_dict["motion_bucket_id"] = motion_bucket_id
|
134 |
-
value_dict["fps_id"] = fps_id
|
135 |
-
value_dict["cond_aug"] = cond_aug
|
136 |
-
value_dict["cond_frames_without_noise"] = image
|
137 |
-
value_dict["cond_frames"] = image + cond_aug * torch.randn_like(image)
|
138 |
-
value_dict["cond_aug"] = cond_aug
|
139 |
-
|
140 |
-
with torch.no_grad():
|
141 |
-
with torch.autocast(device):
|
142 |
-
batch, batch_uc = get_batch(
|
143 |
-
get_unique_embedder_keys_from_conditioner(model.conditioner),
|
144 |
-
value_dict,
|
145 |
-
[1, num_frames],
|
146 |
-
T=num_frames,
|
147 |
-
device=device,
|
148 |
-
)
|
149 |
-
c, uc = model.conditioner.get_unconditional_conditioning(
|
150 |
-
batch,
|
151 |
-
batch_uc=batch_uc,
|
152 |
-
force_uc_zero_embeddings=[
|
153 |
-
"cond_frames",
|
154 |
-
"cond_frames_without_noise",
|
155 |
-
],
|
156 |
-
)
|
157 |
-
|
158 |
-
for k in ["crossattn", "concat"]:
|
159 |
-
uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames)
|
160 |
-
uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames)
|
161 |
-
c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames)
|
162 |
-
c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames)
|
163 |
-
|
164 |
-
randn = torch.randn(shape, device=device)
|
165 |
-
|
166 |
-
additional_model_inputs = {}
|
167 |
-
additional_model_inputs["image_only_indicator"] = torch.zeros(
|
168 |
-
2, num_frames
|
169 |
-
).to(device)
|
170 |
-
additional_model_inputs["num_video_frames"] = batch["num_video_frames"]
|
171 |
-
|
172 |
-
def denoiser(input, sigma, c):
|
173 |
-
return model.denoiser(
|
174 |
-
model.model, input, sigma, c, **additional_model_inputs
|
175 |
-
)
|
176 |
-
|
177 |
-
samples_z = model.sampler(denoiser, randn, cond=c, uc=uc)
|
178 |
-
model.en_and_decode_n_samples_a_time = decoding_t
|
179 |
-
samples_x = model.decode_first_stage(samples_z)
|
180 |
-
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
|
181 |
-
|
182 |
-
os.makedirs(output_folder, exist_ok=True)
|
183 |
-
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
184 |
-
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
185 |
-
writer = cv2.VideoWriter(
|
186 |
-
video_path,
|
187 |
-
cv2.VideoWriter_fourcc(*"MP4V"),
|
188 |
-
fps_id + 1,
|
189 |
-
(samples.shape[-1], samples.shape[-2]),
|
190 |
-
)
|
191 |
-
|
192 |
-
samples = embed_watermark(samples)
|
193 |
-
samples = filter(samples)
|
194 |
-
vid = (
|
195 |
-
(rearrange(samples, "t c h w -> t h w c") * 255)
|
196 |
-
.cpu()
|
197 |
-
.numpy()
|
198 |
-
.astype(np.uint8)
|
199 |
-
)
|
200 |
-
for frame in vid:
|
201 |
-
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
202 |
-
writer.write(frame)
|
203 |
-
writer.release()
|
204 |
-
|
205 |
-
|
206 |
-
def get_unique_embedder_keys_from_conditioner(conditioner):
|
207 |
-
return list(set([x.input_key for x in conditioner.embedders]))
|
208 |
-
|
209 |
-
|
210 |
-
def get_batch(keys, value_dict, N, T, device):
|
211 |
-
batch = {}
|
212 |
-
batch_uc = {}
|
213 |
-
|
214 |
-
for key in keys:
|
215 |
-
if key == "fps_id":
|
216 |
-
batch[key] = (
|
217 |
-
torch.tensor([value_dict["fps_id"]])
|
218 |
-
.to(device)
|
219 |
-
.repeat(int(math.prod(N)))
|
220 |
-
)
|
221 |
-
elif key == "motion_bucket_id":
|
222 |
-
batch[key] = (
|
223 |
-
torch.tensor([value_dict["motion_bucket_id"]])
|
224 |
-
.to(device)
|
225 |
-
.repeat(int(math.prod(N)))
|
226 |
-
)
|
227 |
-
elif key == "cond_aug":
|
228 |
-
batch[key] = repeat(
|
229 |
-
torch.tensor([value_dict["cond_aug"]]).to(device),
|
230 |
-
"1 -> b",
|
231 |
-
b=math.prod(N),
|
232 |
-
)
|
233 |
-
elif key == "cond_frames":
|
234 |
-
batch[key] = repeat(value_dict["cond_frames"], "1 ... -> b ...", b=N[0])
|
235 |
-
elif key == "cond_frames_without_noise":
|
236 |
-
batch[key] = repeat(
|
237 |
-
value_dict["cond_frames_without_noise"], "1 ... -> b ...", b=N[0]
|
238 |
-
)
|
239 |
-
else:
|
240 |
-
batch[key] = value_dict[key]
|
241 |
-
|
242 |
-
if T is not None:
|
243 |
-
batch["num_video_frames"] = T
|
244 |
-
|
245 |
-
for key in batch.keys():
|
246 |
-
if key not in batch_uc and isinstance(batch[key], torch.Tensor):
|
247 |
-
batch_uc[key] = torch.clone(batch[key])
|
248 |
-
return batch, batch_uc
|
249 |
-
|
250 |
-
|
251 |
-
def load_model(
|
252 |
-
config: str,
|
253 |
-
device: str,
|
254 |
-
num_frames: int,
|
255 |
-
num_steps: int,
|
256 |
-
):
|
257 |
-
config = OmegaConf.load(config)
|
258 |
-
if device == "cuda":
|
259 |
-
config.model.params.conditioner_config.params.emb_models[
|
260 |
-
0
|
261 |
-
].params.open_clip_embedding_config.params.init_device = device
|
262 |
-
|
263 |
-
config.model.params.sampler_config.params.num_steps = num_steps
|
264 |
-
config.model.params.sampler_config.params.guider_config.params.num_frames = (
|
265 |
-
num_frames
|
266 |
-
)
|
267 |
-
if device == "cuda":
|
268 |
-
with torch.device(device):
|
269 |
-
model = instantiate_from_config(config.model).to(device).eval()
|
270 |
-
else:
|
271 |
-
model = instantiate_from_config(config.model).to(device).eval()
|
272 |
-
|
273 |
-
filter = DeepFloydDataFiltering(verbose=False, device=device)
|
274 |
-
return model, filter
|
275 |
-
|
276 |
-
|
277 |
-
if __name__ == "__main__":
|
278 |
-
Fire(sample)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|