File size: 96,602 Bytes
a0bd9cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
190a8ea
 
 
320cd35
a0bd9cc
acf2569
7f1aa40
a0bd9cc
 
 
 
 
 
ad1fd8e
ee89b87
a0bd9cc
 
 
 
 
 
 
ad1fd8e
a0bd9cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af3e488
ee89b87
a0bd9cc
 
 
 
 
 
 
 
 
 
 
 
ad1fd8e
a0bd9cc
 
aa64bf6
a0bd9cc
 
 
 
 
 
 
 
 
ad1fd8e
a0bd9cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f1aa40
a0bd9cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad1fd8e
a0bd9cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad1fd8e
a0bd9cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad1fd8e
 
a0bd9cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad1fd8e
 
 
a0bd9cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f1aa40
a0bd9cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81a1b56
a0bd9cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c92ac2
 
ad1fd8e
 
 
 
 
9c92ac2
64f5677
a0bd9cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
656dce9
 
 
 
 
 
 
 
 
 
 
a0bd9cc
9c92ac2
a0bd9cc
 
ad1fd8e
 
656dce9
ad1fd8e
a0bd9cc
 
 
b759ddd
ad1fd8e
a0bd9cc
 
 
7d260f3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
import sys
import argparse
import math
from pathlib import Path
import sys
import pandas as pd
from base64 import b64encode
from omegaconf import OmegaConf
from PIL import Image
from taming.models import cond_transformer, vqgan
import torch
from os.path import exists as path_exists

torch.cuda.empty_cache()
from torch import nn
import torch.optim as optim
from torch import optim
from torch.nn import functional as F
from torchvision import transforms
from torchvision.transforms import functional as TF
import torchvision.transforms as T
from git.repo.base import Repo

if not (path_exists(f"CLIP")):
    Repo.clone_from("https://github.com/openai/CLIP", "CLIP")

from CLIP import clip
import gradio as gr
import kornia.augmentation as K
import numpy as np
import subprocess
import imageio
from PIL import ImageFile, Image
import time
import base64

import hashlib
from PIL.PngImagePlugin import PngImageFile, PngInfo
import json
import urllib.request
from random import randint
from pathvalidate import sanitize_filename
from huggingface_hub import hf_hub_download
import shortuuid

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("Using device:", device)

vqgan_model = hf_hub_download(repo_id="boris/vqgan_f16_16384", filename="model.ckpt")
vqgan_config = hf_hub_download(repo_id="boris/vqgan_f16_16384", filename="config.yaml")

def load_vqgan_model(config_path, checkpoint_path):
        config = OmegaConf.load(config_path)
        if config.model.target == "taming.models.vqgan.VQModel":
            model = vqgan.VQModel(**config.model.params)
            model.eval().requires_grad_(False)
            model.init_from_ckpt(checkpoint_path)
        elif config.model.target == "taming.models.cond_transformer.Net2NetTransformer":
            parent_model = cond_transformer.Net2NetTransformer(**config.model.params)
            parent_model.eval().requires_grad_(False)
            parent_model.init_from_ckpt(checkpoint_path)
            model = parent_model.first_stage_model
        elif config.model.target == "taming.models.vqgan.GumbelVQ":
            model = vqgan.GumbelVQ(**config.model.params)
            # print(config.model.params)
            model.eval().requires_grad_(False)
            model.init_from_ckpt(checkpoint_path)
        else:
            raise ValueError(f"unknown model type: {config.model.target}")
        del model.loss
        return model
model = load_vqgan_model(vqgan_config, vqgan_model).to(device)
perceptor = (
    clip.load("ViT-B/32", jit=False)[0]
    .eval()
    .requires_grad_(False)
    .to(device)
)
def run_all(user_input, num_steps, flavor, template, width, height):
    import random
    #if uploaded_file is not None:
        #uploaded_folder = f"{DefaultPaths.root_path}/uploaded"
        #if not path_exists(uploaded_folder):
        #    os.makedirs(uploaded_folder)
        #image_data = uploaded_file.read()
        #f = open(f"{uploaded_folder}/{uploaded_file.name}", "wb")
        #f.write(image_data)
        #f.close()
        #image_path = f"{uploaded_folder}/{uploaded_file.name}"
        #pass
    #else:
    image_path = None
    url = shortuuid.uuid()
    args2 = argparse.Namespace(
            prompt=user_input,
            seed=int(random.randint(0, 2147483647)),
            sizex=width,
            sizey=height,
            flavor=flavor,
            iterations=num_steps,
            mse=True,
            update=100,
            template=template,
            vqgan_model='ImageNet 16384',
            seed_image=image_path,
            image_file=f"{url}.png",
            #frame_dir=intermediary_folder,
         )
    if args2.seed is not None:
        import torch

        import numpy as np

        np.random.seed(args2.seed)
        import random

        random.seed(args2.seed)
        # next line forces deterministic random values, but causes other issues with resampling (uncomment to see)
        torch.manual_seed(args2.seed)
        torch.cuda.manual_seed(args2.seed)
        torch.cuda.manual_seed_all(args2.seed)
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print("Using device:", device)

    def noise_gen(shape, octaves=5):
        n, c, h, w = shape
        noise = torch.zeros([n, c, 1, 1])
        max_octaves = min(octaves, math.log(h) / math.log(2), math.log(w) / math.log(2))
        for i in reversed(range(max_octaves)):
            h_cur, w_cur = h // 2**i, w // 2**i
            noise = F.interpolate(
                noise, (h_cur, w_cur), mode="bicubic", align_corners=False
            )
            noise += torch.randn([n, c, h_cur, w_cur]) / 5
        return noise

    def sinc(x):
        return torch.where(
            x != 0, torch.sin(math.pi * x) / (math.pi * x), x.new_ones([])
        )

    def lanczos(x, a):
        cond = torch.logical_and(-a < x, x < a)
        out = torch.where(cond, sinc(x) * sinc(x / a), x.new_zeros([]))
        return out / out.sum()

    def ramp(ratio, width):
        n = math.ceil(width / ratio + 1)
        out = torch.empty([n])
        cur = 0
        for i in range(out.shape[0]):
            out[i] = cur
            cur += ratio
        return torch.cat([-out[1:].flip([0]), out])[1:-1]

    def resample(input, size, align_corners=True):
        n, c, h, w = input.shape
        dh, dw = size

        input = input.view([n * c, 1, h, w])

        if dh < h:
            kernel_h = lanczos(ramp(dh / h, 2), 2).to(input.device, input.dtype)
            pad_h = (kernel_h.shape[0] - 1) // 2
            input = F.pad(input, (0, 0, pad_h, pad_h), "reflect")
            input = F.conv2d(input, kernel_h[None, None, :, None])

        if dw < w:
            kernel_w = lanczos(ramp(dw / w, 2), 2).to(input.device, input.dtype)
            pad_w = (kernel_w.shape[0] - 1) // 2
            input = F.pad(input, (pad_w, pad_w, 0, 0), "reflect")
            input = F.conv2d(input, kernel_w[None, None, None, :])

        input = input.view([n, c, h, w])
        return F.interpolate(input, size, mode="bicubic", align_corners=align_corners)

    def lerp(a, b, f):
        return (a * (1.0 - f)) + (b * f)

    class ReplaceGrad(torch.autograd.Function):
        @staticmethod
        def forward(ctx, x_forward, x_backward):
            ctx.shape = x_backward.shape
            return x_forward

        @staticmethod
        def backward(ctx, grad_in):
            return None, grad_in.sum_to_size(ctx.shape)

    replace_grad = ReplaceGrad.apply

    class ClampWithGrad(torch.autograd.Function):
        @staticmethod
        def forward(ctx, input, min, max):
            ctx.min = min
            ctx.max = max
            ctx.save_for_backward(input)
            return input.clamp(min, max)

        @staticmethod
        def backward(ctx, grad_in):
            (input,) = ctx.saved_tensors
            return (
                grad_in * (grad_in * (input - input.clamp(ctx.min, ctx.max)) >= 0),
                None,
                None,
            )

    clamp_with_grad = ClampWithGrad.apply

    def vector_quantize(x, codebook):
        d = (
            x.pow(2).sum(dim=-1, keepdim=True)
            + codebook.pow(2).sum(dim=1)
            - 2 * x @ codebook.T
        )
        indices = d.argmin(-1)
        x_q = F.one_hot(indices, codebook.shape[0]).to(d.dtype) @ codebook
        return replace_grad(x_q, x)

    class Prompt(nn.Module):
        def __init__(self, embed, weight=1.0, stop=float("-inf")):
            super().__init__()
            self.register_buffer("embed", embed)
            self.register_buffer("weight", torch.as_tensor(weight))
            self.register_buffer("stop", torch.as_tensor(stop))

        def forward(self, input):
            input_normed = F.normalize(input.unsqueeze(1), dim=2)
            embed_normed = F.normalize(self.embed.unsqueeze(0), dim=2)
            dists = (
                input_normed.sub(embed_normed).norm(dim=2).div(2).arcsin().pow(2).mul(2)
            )
            dists = dists * self.weight.sign()
            return (
                self.weight.abs()
                * replace_grad(dists, torch.maximum(dists, self.stop)).mean()
            )

    def parse_prompt(prompt):
        if prompt.startswith("http://") or prompt.startswith("https://"):
            vals = prompt.rsplit(":", 1)
            vals = [vals[0] + ":" + vals[1], *vals[2:]]
        else:
            vals = prompt.rsplit(":", 1)
        vals = vals + ["", "1", "-inf"][len(vals) :]
        return vals[0], float(vals[1]), float(vals[2])

    def one_sided_clip_loss(input, target, labels=None, logit_scale=100):
        input_normed = F.normalize(input, dim=-1)
        target_normed = F.normalize(target, dim=-1)
        logits = input_normed @ target_normed.T * logit_scale
        if labels is None:
            labels = torch.arange(len(input), device=logits.device)
        return F.cross_entropy(logits, labels)

    class EMATensor(nn.Module):
        """implmeneted by Katherine Crowson"""

        def __init__(self, tensor, decay):
            super().__init__()
            self.tensor = nn.Parameter(tensor)
            self.register_buffer("biased", torch.zeros_like(tensor))
            self.register_buffer("average", torch.zeros_like(tensor))
            self.decay = decay
            self.register_buffer("accum", torch.tensor(1.0))
            self.update()

        @torch.no_grad()
        def update(self):
            if not self.training:
                raise RuntimeError("update() should only be called during training")

            self.accum *= self.decay
            self.biased.mul_(self.decay)
            self.biased.add_((1 - self.decay) * self.tensor)
            self.average.copy_(self.biased)
            self.average.div_(1 - self.accum)

        def forward(self):
            if self.training:
                return self.tensor
            return self.average

    class MakeCutoutsCustom(nn.Module):
        def __init__(self, cut_size, cutn, cut_pow, augs):
            super().__init__()
            self.cut_size = cut_size
            # tqdm.write(f"cut size: {self.cut_size}")
            self.cutn = cutn
            self.cut_pow = cut_pow
            self.noise_fac = 0.1
            self.av_pool = nn.AdaptiveAvgPool2d((self.cut_size, self.cut_size))
            self.max_pool = nn.AdaptiveMaxPool2d((self.cut_size, self.cut_size))
            self.augs = nn.Sequential(
                K.RandomHorizontalFlip(p=Random_Horizontal_Flip),
                K.RandomSharpness(Random_Sharpness, p=Random_Sharpness_P),
                K.RandomGaussianBlur(
                    (Random_Gaussian_Blur),
                    (Random_Gaussian_Blur_W, Random_Gaussian_Blur_W),
                    p=Random_Gaussian_Blur_P,
                ),
                K.RandomGaussianNoise(p=Random_Gaussian_Noise_P),
                K.RandomElasticTransform(
                    kernel_size=(
                        Random_Elastic_Transform_Kernel_Size_W,
                        Random_Elastic_Transform_Kernel_Size_H,
                    ),
                    sigma=(Random_Elastic_Transform_Sigma),
                    p=Random_Elastic_Transform_P,
                ),
                K.RandomAffine(
                    degrees=Random_Affine_Degrees,
                    translate=Random_Affine_Translate,
                    p=Random_Affine_P,
                    padding_mode="border",
                ),
                K.RandomPerspective(Random_Perspective, p=Random_Perspective_P),
                K.ColorJitter(
                    hue=Color_Jitter_Hue,
                    saturation=Color_Jitter_Saturation,
                    p=Color_Jitter_P,
                ),
            )
            # K.RandomErasing((0.1, 0.7), (0.3, 1/0.4), same_on_batch=True, p=0.2),)

        def set_cut_pow(self, cut_pow):
            self.cut_pow = cut_pow

        def forward(self, input):
            sideY, sideX = input.shape[2:4]
            max_size = min(sideX, sideY)
            min_size = min(sideX, sideY, self.cut_size)
            cutouts = []
            cutouts_full = []
            noise_fac = 0.1

            min_size_width = min(sideX, sideY)
            lower_bound = float(self.cut_size / min_size_width)

            for ii in range(self.cutn):

                # size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size)
                randsize = (
                    torch.zeros(
                        1,
                    )
                    .normal_(mean=0.8, std=0.3)
                    .clip(lower_bound, 1.0)
                )
                size_mult = randsize**self.cut_pow
                size = int(
                    min_size_width * (size_mult.clip(lower_bound, 1.0))
                )  # replace .5 with a result for 224 the default large size is .95
                # size = int(min_size_width*torch.zeros(1,).normal_(mean=.9, std=.3).clip(lower_bound, .95)) # replace .5 with a result for 224 the default large size is .95

                offsetx = torch.randint(0, sideX - size + 1, ())
                offsety = torch.randint(0, sideY - size + 1, ())
                cutout = input[:, :, offsety : offsety + size, offsetx : offsetx + size]
                cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))

            cutouts = torch.cat(cutouts, dim=0)
            cutouts = clamp_with_grad(cutouts, 0, 1)

            # if args.use_augs:
            cutouts = self.augs(cutouts)
            if self.noise_fac:
                facs = cutouts.new_empty([cutouts.shape[0], 1, 1, 1]).uniform_(
                    0, self.noise_fac
                )
                cutouts = cutouts + facs * torch.randn_like(cutouts)
            return cutouts

    class MakeCutoutsJuu(nn.Module):
        def __init__(self, cut_size, cutn, cut_pow, augs):
            super().__init__()
            self.cut_size = cut_size
            self.cutn = cutn
            self.cut_pow = cut_pow
            self.augs = nn.Sequential(
                # K.RandomGaussianNoise(mean=0.0, std=0.5, p=0.1),
                K.RandomHorizontalFlip(p=0.5),
                K.RandomSharpness(0.3, p=0.4),
                K.RandomAffine(degrees=30, translate=0.1, p=0.8, padding_mode="border"),
                K.RandomPerspective(0.2, p=0.4),
                K.ColorJitter(hue=0.01, saturation=0.01, p=0.7),
                K.RandomGrayscale(p=0.1),
            )
            self.noise_fac = 0.1

        def forward(self, input):
            sideY, sideX = input.shape[2:4]
            max_size = min(sideX, sideY)
            min_size = min(sideX, sideY, self.cut_size)
            cutouts = []
            for _ in range(self.cutn):
                size = int(
                    torch.rand([]) ** self.cut_pow * (max_size - min_size) + min_size
                )
                offsetx = torch.randint(0, sideX - size + 1, ())
                offsety = torch.randint(0, sideY - size + 1, ())
                cutout = input[:, :, offsety : offsety + size, offsetx : offsetx + size]
                cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))
            batch = self.augs(torch.cat(cutouts, dim=0))
            if self.noise_fac:
                facs = batch.new_empty([self.cutn, 1, 1, 1]).uniform_(0, self.noise_fac)
                batch = batch + facs * torch.randn_like(batch)
            return batch

    class MakeCutoutsMoth(nn.Module):
        def __init__(self, cut_size, cutn, cut_pow, augs, skip_augs=False):
            super().__init__()
            self.cut_size = cut_size
            self.cutn = cutn
            self.cut_pow = cut_pow
            self.skip_augs = skip_augs
            self.augs = T.Compose(
                [
                    T.RandomHorizontalFlip(p=0.5),
                    T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
                    T.RandomAffine(degrees=15, translate=(0.1, 0.1)),
                    T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
                    T.RandomPerspective(distortion_scale=0.4, p=0.7),
                    T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
                    T.RandomGrayscale(p=0.15),
                    T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
                    # T.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1),
                ]
            )

        def forward(self, input):
            input = T.Pad(input.shape[2] // 4, fill=0)(input)
            sideY, sideX = input.shape[2:4]
            max_size = min(sideX, sideY)

            cutouts = []
            for ch in range(cutn):
                if ch > cutn - cutn // 4:
                    cutout = input.clone()
                else:
                    size = int(
                        max_size
                        * torch.zeros(
                            1,
                        )
                        .normal_(mean=0.8, std=0.3)
                        .clip(float(self.cut_size / max_size), 1.0)
                    )
                    offsetx = torch.randint(0, abs(sideX - size + 1), ())
                    offsety = torch.randint(0, abs(sideY - size + 1), ())
                    cutout = input[
                        :, :, offsety : offsety + size, offsetx : offsetx + size
                    ]

                if not self.skip_augs:
                    cutout = self.augs(cutout)
                cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))
                del cutout

            cutouts = torch.cat(cutouts, dim=0)
            return cutouts

    class MakeCutoutsAaron(nn.Module):
        def __init__(self, cut_size, cutn, cut_pow, augs):
            super().__init__()
            self.cut_size = cut_size
            self.cutn = cutn
            self.cut_pow = cut_pow
            self.augs = augs
            self.av_pool = nn.AdaptiveAvgPool2d((self.cut_size, self.cut_size))
            self.max_pool = nn.AdaptiveMaxPool2d((self.cut_size, self.cut_size))

        def set_cut_pow(self, cut_pow):
            self.cut_pow = cut_pow

        def forward(self, input):
            sideY, sideX = input.shape[2:4]
            max_size = min(sideX, sideY)
            min_size = min(sideX, sideY, self.cut_size)
            cutouts = []
            cutouts_full = []

            min_size_width = min(sideX, sideY)
            lower_bound = float(self.cut_size / min_size_width)

            for ii in range(self.cutn):
                size = int(
                    min_size_width
                    * torch.zeros(
                        1,
                    )
                    .normal_(mean=0.8, std=0.3)
                    .clip(lower_bound, 1.0)
                )  # replace .5 with a result for 224 the default large size is .95

                offsetx = torch.randint(0, sideX - size + 1, ())
                offsety = torch.randint(0, sideY - size + 1, ())
                cutout = input[:, :, offsety : offsety + size, offsetx : offsetx + size]
                cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))

            cutouts = torch.cat(cutouts, dim=0)

            return clamp_with_grad(cutouts, 0, 1)

    class MakeCutoutsCumin(nn.Module):
        # from https://colab.research.google.com/drive/1ZAus_gn2RhTZWzOWUpPERNC0Q8OhZRTZ
        def __init__(self, cut_size, cutn, cut_pow, augs):
            super().__init__()
            self.cut_size = cut_size
            # tqdm.write(f"cut size: {self.cut_size}")
            self.cutn = cutn
            self.cut_pow = cut_pow
            self.noise_fac = 0.1
            self.av_pool = nn.AdaptiveAvgPool2d((self.cut_size, self.cut_size))
            self.max_pool = nn.AdaptiveMaxPool2d((self.cut_size, self.cut_size))
            self.augs = nn.Sequential(
                # K.RandomHorizontalFlip(p=0.5),
                # K.RandomSharpness(0.3,p=0.4),
                # K.RandomGaussianBlur((3,3),(10.5,10.5),p=0.2),
                # K.RandomGaussianNoise(p=0.5),
                # K.RandomElasticTransform(kernel_size=(33, 33), sigma=(7,7), p=0.2),
                K.RandomAffine(degrees=15, translate=0.1, p=0.7, padding_mode="border"),
                K.RandomPerspective(0.7, p=0.7),
                K.ColorJitter(hue=0.1, saturation=0.1, p=0.7),
                K.RandomErasing((0.1, 0.4), (0.3, 1 / 0.3), same_on_batch=True, p=0.7),
            )

        def set_cut_pow(self, cut_pow):
            self.cut_pow = cut_pow

        def forward(self, input):
            sideY, sideX = input.shape[2:4]
            max_size = min(sideX, sideY)
            min_size = min(sideX, sideY, self.cut_size)
            cutouts = []
            cutouts_full = []
            noise_fac = 0.1

            min_size_width = min(sideX, sideY)
            lower_bound = float(self.cut_size / min_size_width)

            for ii in range(self.cutn):

                # size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size)
                randsize = (
                    torch.zeros(
                        1,
                    )
                    .normal_(mean=0.8, std=0.3)
                    .clip(lower_bound, 1.0)
                )
                size_mult = randsize**self.cut_pow
                size = int(
                    min_size_width * (size_mult.clip(lower_bound, 1.0))
                )  # replace .5 with a result for 224 the default large size is .95
                # size = int(min_size_width*torch.zeros(1,).normal_(mean=.9, std=.3).clip(lower_bound, .95)) # replace .5 with a result for 224 the default large size is .95

                offsetx = torch.randint(0, sideX - size + 1, ())
                offsety = torch.randint(0, sideY - size + 1, ())
                cutout = input[:, :, offsety : offsety + size, offsetx : offsetx + size]
                cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))

            cutouts = torch.cat(cutouts, dim=0)
            cutouts = clamp_with_grad(cutouts, 0, 1)

            # if args.use_augs:
            cutouts = self.augs(cutouts)
            if self.noise_fac:
                facs = cutouts.new_empty([cutouts.shape[0], 1, 1, 1]).uniform_(
                    0, self.noise_fac
                )
                cutouts = cutouts + facs * torch.randn_like(cutouts)
            return cutouts

    class MakeCutoutsHolywater(nn.Module):
        def __init__(self, cut_size, cutn, cut_pow, augs):
            super().__init__()
            self.cut_size = cut_size
            # tqdm.write(f"cut size: {self.cut_size}")
            self.cutn = cutn
            self.cut_pow = cut_pow
            self.noise_fac = 0.1
            self.av_pool = nn.AdaptiveAvgPool2d((self.cut_size, self.cut_size))
            self.max_pool = nn.AdaptiveMaxPool2d((self.cut_size, self.cut_size))
            self.augs = nn.Sequential(
                # K.RandomGaussianNoise(mean=0.0, std=0.5, p=0.1),
                K.RandomHorizontalFlip(p=0.5),
                K.RandomSharpness(0.3, p=0.4),
                K.RandomAffine(degrees=30, translate=0.1, p=0.8, padding_mode="border"),
                K.RandomPerspective(0.2, p=0.4),
                K.ColorJitter(hue=0.01, saturation=0.01, p=0.7),
                K.RandomGrayscale(p=0.1),
            )

        def set_cut_pow(self, cut_pow):
            self.cut_pow = cut_pow

        def forward(self, input):
            sideY, sideX = input.shape[2:4]
            max_size = min(sideX, sideY)
            min_size = min(sideX, sideY, self.cut_size)
            cutouts = []
            cutouts_full = []
            noise_fac = 0.1
            min_size_width = min(sideX, sideY)
            lower_bound = float(self.cut_size / min_size_width)

            for ii in range(self.cutn):
                size = int(
                    torch.rand([]) ** self.cut_pow * (max_size - min_size) + min_size
                )
                randsize = (
                    torch.zeros(
                        1,
                    )
                    .normal_(mean=0.8, std=0.3)
                    .clip(lower_bound, 1.0)
                )
                size_mult = randsize**self.cut_pow * ii + size
                size1 = int(
                    (min_size_width) * (size_mult.clip(lower_bound, 1.0))
                )  # replace .5 with a result for 224 the default large size is .95
                size2 = int(
                    (min_size_width)
                    * torch.zeros(
                        1,
                    )
                    .normal_(mean=0.9, std=0.3)
                    .clip(lower_bound, 0.95)
                )  # replace .5 with a result for 224 the default large size is .95
                offsetx = torch.randint(0, sideX - size1 + 1, ())
                offsety = torch.randint(0, sideY - size2 + 1, ())
                cutout = input[
                    :, :, offsety : offsety + size2 + ii, offsetx : offsetx + size1 + ii
                ]
                cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))

            cutouts = torch.cat(cutouts, dim=0)
            cutouts = clamp_with_grad(cutouts, 0, 1)
            cutouts = self.augs(cutouts)
            facs = cutouts.new_empty([cutouts.shape[0], 1, 1, 1]).uniform_(
                0, self.noise_fac
            )
            cutouts = cutouts + facs * torch.randn_like(cutouts)
            return cutouts

    class MakeCutoutsOldHolywater(nn.Module):
        def __init__(self, cut_size, cutn, cut_pow, augs):
            super().__init__()
            self.cut_size = cut_size
            # tqdm.write(f"cut size: {self.cut_size}")
            self.cutn = cutn
            self.cut_pow = cut_pow
            self.noise_fac = 0.1
            self.av_pool = nn.AdaptiveAvgPool2d((self.cut_size, self.cut_size))
            self.max_pool = nn.AdaptiveMaxPool2d((self.cut_size, self.cut_size))
            self.augs = nn.Sequential(
                # K.RandomHorizontalFlip(p=0.5),
                # K.RandomSharpness(0.3,p=0.4),
                # K.RandomGaussianBlur((3,3),(10.5,10.5),p=0.2),
                # K.RandomGaussianNoise(p=0.5),
                # K.RandomElasticTransform(kernel_size=(33, 33), sigma=(7,7), p=0.2),
                K.RandomAffine(
                    degrees=180, translate=0.5, p=0.2, padding_mode="border"
                ),
                K.RandomPerspective(0.6, p=0.9),
                K.ColorJitter(hue=0.03, saturation=0.01, p=0.1),
                K.RandomErasing((0.1, 0.7), (0.3, 1 / 0.4), same_on_batch=True, p=0.2),
            )

        def set_cut_pow(self, cut_pow):
            self.cut_pow = cut_pow

        def forward(self, input):
            sideY, sideX = input.shape[2:4]
            max_size = min(sideX, sideY)
            min_size = min(sideX, sideY, self.cut_size)
            cutouts = []
            cutouts_full = []
            noise_fac = 0.1

            min_size_width = min(sideX, sideY)
            lower_bound = float(self.cut_size / min_size_width)

            for ii in range(self.cutn):

                # size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size)
                randsize = (
                    torch.zeros(
                        1,
                    )
                    .normal_(mean=0.8, std=0.3)
                    .clip(lower_bound, 1.0)
                )
                size_mult = randsize**self.cut_pow
                size = int(
                    min_size_width * (size_mult.clip(lower_bound, 1.0))
                )  # replace .5 with a result for 224 the default large size is .95
                # size = int(min_size_width*torch.zeros(1,).normal_(mean=.9, std=.3).clip(lower_bound, .95)) # replace .5 with a result for 224 the default large size is .95

                offsetx = torch.randint(0, sideX - size + 1, ())
                offsety = torch.randint(0, sideY - size + 1, ())
                cutout = input[:, :, offsety : offsety + size, offsetx : offsetx + size]
                cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))

            cutouts = torch.cat(cutouts, dim=0)
            cutouts = clamp_with_grad(cutouts, 0, 1)

            # if args.use_augs:
            cutouts = self.augs(cutouts)
            if self.noise_fac:
                facs = cutouts.new_empty([cutouts.shape[0], 1, 1, 1]).uniform_(
                    0, self.noise_fac
                )
                cutouts = cutouts + facs * torch.randn_like(cutouts)
            return cutouts

    class MakeCutoutsGinger(nn.Module):
        def __init__(self, cut_size, cutn, cut_pow, augs):
            super().__init__()
            self.cut_size = cut_size
            # tqdm.write(f"cut size: {self.cut_size}")
            self.cutn = cutn
            self.cut_pow = cut_pow
            self.noise_fac = 0.1
            self.av_pool = nn.AdaptiveAvgPool2d((self.cut_size, self.cut_size))
            self.max_pool = nn.AdaptiveMaxPool2d((self.cut_size, self.cut_size))
            self.augs = augs
            """
          nn.Sequential(
            K.RandomHorizontalFlip(p=0.5),
            K.RandomSharpness(0.3,p=0.4),
            K.RandomGaussianBlur((3,3),(10.5,10.5),p=0.2),
            K.RandomGaussianNoise(p=0.5),
            K.RandomElasticTransform(kernel_size=(33, 33), sigma=(7,7), p=0.2),
            K.RandomAffine(degrees=30, translate=0.1, p=0.8, padding_mode='border'), # padding_mode=2
            K.RandomPerspective(0.2,p=0.4, ),
            K.ColorJitter(hue=0.01, saturation=0.01, p=0.7),)
  """

        def set_cut_pow(self, cut_pow):
            self.cut_pow = cut_pow

        def forward(self, input):
            sideY, sideX = input.shape[2:4]
            max_size = min(sideX, sideY)
            min_size = min(sideX, sideY, self.cut_size)
            cutouts = []
            cutouts_full = []
            noise_fac = 0.1

            min_size_width = min(sideX, sideY)
            lower_bound = float(self.cut_size / min_size_width)

            for ii in range(self.cutn):

                # size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size)
                randsize = (
                    torch.zeros(
                        1,
                    )
                    .normal_(mean=0.8, std=0.3)
                    .clip(lower_bound, 1.0)
                )
                size_mult = randsize**self.cut_pow
                size = int(
                    min_size_width * (size_mult.clip(lower_bound, 1.0))
                )  # replace .5 with a result for 224 the default large size is .95
                # size = int(min_size_width*torch.zeros(1,).normal_(mean=.9, std=.3).clip(lower_bound, .95)) # replace .5 with a result for 224 the default large size is .95

                offsetx = torch.randint(0, sideX - size + 1, ())
                offsety = torch.randint(0, sideY - size + 1, ())
                cutout = input[:, :, offsety : offsety + size, offsetx : offsetx + size]
                cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))

            cutouts = torch.cat(cutouts, dim=0)
            cutouts = clamp_with_grad(cutouts, 0, 1)

            # if args.use_augs:
            cutouts = self.augs(cutouts)
            if self.noise_fac:
                facs = cutouts.new_empty([cutouts.shape[0], 1, 1, 1]).uniform_(
                    0, self.noise_fac
                )
                cutouts = cutouts + facs * torch.randn_like(cutouts)
            return cutouts

    class MakeCutoutsZynth(nn.Module):
        def __init__(self, cut_size, cutn, cut_pow, augs):
            super().__init__()
            self.cut_size = cut_size
            # tqdm.write(f"cut size: {self.cut_size}")
            self.cutn = cutn
            self.cut_pow = cut_pow
            self.noise_fac = 0.1
            self.av_pool = nn.AdaptiveAvgPool2d((self.cut_size, self.cut_size))
            self.max_pool = nn.AdaptiveMaxPool2d((self.cut_size, self.cut_size))
            self.augs = nn.Sequential(
                K.RandomHorizontalFlip(p=0.5),
                # K.RandomSolarize(0.01, 0.01, p=0.7),
                K.RandomSharpness(0.3, p=0.4),
                K.RandomAffine(degrees=30, translate=0.1, p=0.8, padding_mode="border"),
                K.RandomPerspective(0.2, p=0.4),
                K.ColorJitter(hue=0.01, saturation=0.01, p=0.7),
            )

        def set_cut_pow(self, cut_pow):
            self.cut_pow = cut_pow

        def forward(self, input):
            sideY, sideX = input.shape[2:4]
            max_size = min(sideX, sideY)
            min_size = min(sideX, sideY, self.cut_size)
            cutouts = []
            cutouts_full = []
            noise_fac = 0.1

            min_size_width = min(sideX, sideY)
            lower_bound = float(self.cut_size / min_size_width)

            for ii in range(self.cutn):

                # size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size)
                randsize = (
                    torch.zeros(
                        1,
                    )
                    .normal_(mean=0.8, std=0.3)
                    .clip(lower_bound, 1.0)
                )
                size_mult = randsize**self.cut_pow
                size = int(
                    min_size_width * (size_mult.clip(lower_bound, 1.0))
                )  # replace .5 with a result for 224 the default large size is .95
                # size = int(min_size_width*torch.zeros(1,).normal_(mean=.9, std=.3).clip(lower_bound, .95)) # replace .5 with a result for 224 the default large size is .95

                offsetx = torch.randint(0, sideX - size + 1, ())
                offsety = torch.randint(0, sideY - size + 1, ())
                cutout = input[:, :, offsety : offsety + size, offsetx : offsetx + size]
                cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))

            cutouts = torch.cat(cutouts, dim=0)
            cutouts = clamp_with_grad(cutouts, 0, 1)

            # if args.use_augs:
            cutouts = self.augs(cutouts)
            if self.noise_fac:
                facs = cutouts.new_empty([cutouts.shape[0], 1, 1, 1]).uniform_(
                    0, self.noise_fac
                )
                cutouts = cutouts + facs * torch.randn_like(cutouts)
            return cutouts

    class MakeCutoutsWyvern(nn.Module):
        def __init__(self, cut_size, cutn, cut_pow, augs):
            super().__init__()
            self.cut_size = cut_size
            # tqdm.write(f"cut size: {self.cut_size}")
            self.cutn = cutn
            self.cut_pow = cut_pow
            self.noise_fac = 0.1
            self.av_pool = nn.AdaptiveAvgPool2d((self.cut_size, self.cut_size))
            self.max_pool = nn.AdaptiveMaxPool2d((self.cut_size, self.cut_size))
            self.augs = augs

        def forward(self, input):
            sideY, sideX = input.shape[2:4]
            max_size = min(sideX, sideY)
            min_size = min(sideX, sideY, self.cut_size)
            cutouts = []
            for _ in range(self.cutn):
                size = int(
                    torch.rand([]) ** self.cut_pow * (max_size - min_size) + min_size
                )
                offsetx = torch.randint(0, sideX - size + 1, ())
                offsety = torch.randint(0, sideY - size + 1, ())
                cutout = input[:, :, offsety : offsety + size, offsetx : offsetx + size]
                cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))
            return clamp_with_grad(torch.cat(cutouts, dim=0), 0, 1)

    
    import PIL

    def resize_image(image, out_size):
        ratio = image.size[0] / image.size[1]
        area = min(image.size[0] * image.size[1], out_size[0] * out_size[1])
        size = round((area * ratio) ** 0.5), round((area / ratio) ** 0.5)
        return image.resize(size, PIL.Image.LANCZOS)

    class GaussianBlur2d(nn.Module):
        def __init__(self, sigma, window=0, mode="reflect", value=0):
            super().__init__()
            self.mode = mode
            self.value = value
            if not window:
                window = max(math.ceil((sigma * 6 + 1) / 2) * 2 - 1, 3)
            if sigma:
                kernel = torch.exp(
                    -((torch.arange(window) - window // 2) ** 2) / 2 / sigma**2
                )
                kernel /= kernel.sum()
            else:
                kernel = torch.ones([1])
            self.register_buffer("kernel", kernel)

        def forward(self, input):
            n, c, h, w = input.shape
            input = input.view([n * c, 1, h, w])
            start_pad = (self.kernel.shape[0] - 1) // 2
            end_pad = self.kernel.shape[0] // 2
            input = F.pad(
                input, (start_pad, end_pad, start_pad, end_pad), self.mode, self.value
            )
            input = F.conv2d(input, self.kernel[None, None, None, :])
            input = F.conv2d(input, self.kernel[None, None, :, None])
            return input.view([n, c, h, w])

    BUF_SIZE = 65536

    def get_digest(path, alg=hashlib.sha256):
        hash = alg()
        # print(path)
        with open(path, "rb") as fp:
            while True:
                data = fp.read(BUF_SIZE)
                if not data:
                    break
                hash.update(data)
        return b64encode(hash.digest()).decode("utf-8")

    flavordict = {
        "cumin": MakeCutoutsCumin,
        "holywater": MakeCutoutsHolywater,
        "old_holywater": MakeCutoutsOldHolywater,
        "ginger": MakeCutoutsGinger,
        "zynth": MakeCutoutsZynth,
        "wyvern": MakeCutoutsWyvern,
        "aaron": MakeCutoutsAaron,
        "moth": MakeCutoutsMoth,
        "juu": MakeCutoutsJuu,
        "custom": MakeCutoutsCustom,
    }

    @torch.jit.script
    def gelu_impl(x):
        """OpenAI's gelu implementation."""
        return (
            0.5
            * x
            * (1.0 + torch.tanh(0.7978845608028654 * x * (1.0 + 0.044715 * x * x)))
        )

    def gelu(x):
        return gelu_impl(x)

    class MSEDecayLoss(nn.Module):
        def __init__(self, init_weight, mse_decay_rate, mse_epoches, mse_quantize):
            super().__init__()

            self.init_weight = init_weight
            self.has_init_image = False
            self.mse_decay = init_weight / mse_epoches if init_weight else 0
            self.mse_decay_rate = mse_decay_rate
            self.mse_weight = init_weight
            self.mse_epoches = mse_epoches
            self.mse_quantize = mse_quantize

        @torch.no_grad()
        def set_target(self, z_tensor, model):
            z_tensor = z_tensor.detach().clone()
            if self.mse_quantize:
                z_tensor = vector_quantize(
                    z_tensor.movedim(1, 3), model.quantize.embedding.weight
                ).movedim(
                    3, 1
                )  # z.average
            self.z_orig = z_tensor

        def forward(self, i, z):
            if self.is_active(i):
                return F.mse_loss(z, self.z_orig) * self.mse_weight / 2
            return 0

        def is_active(self, i):
            if not self.init_weight:
                return False
            if i <= self.mse_decay_rate and not self.has_init_image:
                return False
            return True

        @torch.no_grad()
        def step(self, i):

            if (
                i % self.mse_decay_rate == 0
                and i != 0
                and i < self.mse_decay_rate * self.mse_epoches
            ):

                if (
                    self.mse_weight - self.mse_decay > 0
                    and self.mse_weight - self.mse_decay >= self.mse_decay
                ):
                    self.mse_weight -= self.mse_decay
                else:
                    self.mse_weight = 0
                # print(f"updated mse weight: {self.mse_weight}")

                return True

            return False

    class TVLoss(nn.Module):
        def forward(self, input):
            input = F.pad(input, (0, 1, 0, 1), "replicate")
            x_diff = input[..., :-1, 1:] - input[..., :-1, :-1]
            y_diff = input[..., 1:, :-1] - input[..., :-1, :-1]
            diff = x_diff**2 + y_diff**2 + 1e-8
            return diff.mean(dim=1).sqrt().mean()

    class MultiClipLoss(nn.Module):
        def __init__(
            self, clip_models, text_prompt, cutn, cut_pow=1.0, clip_weight=1.0
        ):
            super().__init__()

            # Load Clip
            self.perceptors = []
            for cm in clip_models:
                sys.stdout.write(f"Loading {cm[0]} ...\n")
                sys.stdout.flush()
                c = (
                    clip.load(cm[0], jit=False)[0]
                    .eval()
                    .requires_grad_(False)
                    .to(device)
                )
                self.perceptors.append(
                    {
                        "res": c.visual.input_resolution,
                        "perceptor": c,
                        "weight": cm[1],
                        "prompts": [],
                    }
                )
            self.perceptors.sort(key=lambda e: e["res"], reverse=True)

            # Make Cutouts
            self.max_cut_size = self.perceptors[0]["res"]
            # self.make_cuts = flavordict[flavor](self.max_cut_size, cutn, cut_pow)
            # cutouts = flavordict[flavor](self.max_cut_size, cutn, cut_pow=cut_pow, augs=args.augs)

            # Get Prompt Embedings
            # texts = [phrase.strip() for phrase in text_prompt.split("|")]
            # if text_prompt == ['']:
            #  texts = []
            texts = text_prompt
            self.pMs = []
            for prompt in texts:
                txt, weight, stop = parse_prompt(prompt)
                clip_token = clip.tokenize(txt).to(device)
                for p in self.perceptors:
                    embed = p["perceptor"].encode_text(clip_token).float()
                    embed_normed = F.normalize(embed.unsqueeze(0), dim=2)
                    p["prompts"].append(
                        {
                            "embed_normed": embed_normed,
                            "weight": torch.as_tensor(weight, device=device),
                            "stop": torch.as_tensor(stop, device=device),
                        }
                    )

            # Prep Augments
            self.normalize = transforms.Normalize(
                mean=[0.48145466, 0.4578275, 0.40821073],
                std=[0.26862954, 0.26130258, 0.27577711],
            )

            self.augs = nn.Sequential(
                K.RandomHorizontalFlip(p=0.5),
                K.RandomSharpness(0.3, p=0.1),
                K.RandomAffine(
                    degrees=30, translate=0.1, p=0.8, padding_mode="border"
                ),  # padding_mode=2
                K.RandomPerspective(
                    0.2,
                    p=0.4,
                ),
                K.ColorJitter(hue=0.01, saturation=0.01, p=0.7),
                K.RandomGrayscale(p=0.15),
            )
            self.noise_fac = 0.1

            self.clip_weight = clip_weight

        def prepare_cuts(self, img):
            cutouts = self.make_cuts(img)
            cutouts = self.augs(cutouts)
            if self.noise_fac:
                facs = cutouts.new_empty([cutouts.shape[0], 1, 1, 1]).uniform_(
                    0, self.noise_fac
                )
                cutouts = cutouts + facs * torch.randn_like(cutouts)
            cutouts = self.normalize(cutouts)
            return cutouts

        def forward(self, i, img):
            cutouts = checkpoint(self.prepare_cuts, img)
            loss = []

            current_cuts = cutouts
            currentres = self.max_cut_size
            for p in self.perceptors:
                if currentres != p["res"]:
                    current_cuts = resample(cutouts, (p["res"], p["res"]))
                    currentres = p["res"]

                iii = p["perceptor"].encode_image(current_cuts).float()
                input_normed = F.normalize(iii.unsqueeze(1), dim=2)
                for prompt in p["prompts"]:
                    dists = (
                        input_normed.sub(prompt["embed_normed"])
                        .norm(dim=2)
                        .div(2)
                        .arcsin()
                        .pow(2)
                        .mul(2)
                    )
                    dists = dists * prompt["weight"].sign()
                    l = (
                        prompt["weight"].abs()
                        * replace_grad(
                            dists, torch.maximum(dists, prompt["stop"])
                        ).mean()
                    )
                    loss.append(l * p["weight"])

            return loss

    class ModelHost:
        def __init__(self, args):
            self.args = args
            self.model, self.perceptor = None, None
            self.make_cutouts = None
            self.alt_make_cutouts = None
            self.imageSize = None
            self.prompts = None
            self.opt = None
            self.normalize = None
            self.z, self.z_orig, self.z_min, self.z_max = None, None, None, None
            self.metadata = None
            self.mse_weight = 0
            self.normal_flip_optim = None
            self.usealtprompts = False

        def setup_metadata(self, seed):
            metadata = {k: v for k, v in vars(self.args).items()}
            del metadata["max_iterations"]
            del metadata["display_freq"]
            metadata["seed"] = seed
            if metadata["init_image"]:
                path = metadata["init_image"]
                digest = get_digest(path)
                metadata["init_image"] = (path, digest)
            if metadata["image_prompts"]:
                prompts = []
                for prompt in metadata["image_prompts"]:
                    path = prompt
                    digest = get_digest(path)
                    prompts.append((path, digest))
                metadata["image_prompts"] = prompts
            self.metadata = metadata

        def setup_model(self, x):
            i = x
            device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
            
            #perceptor = (
            #    clip.load(args.clip_model, jit=False)[0]
            #    .eval()
            #    .requires_grad_(False)
            #    .to(device)
            #)

            cut_size = perceptor.visual.input_resolution

            if self.args.is_gumbel:
                e_dim = model.quantize.embedding_dim
            else:
                e_dim = model.quantize.e_dim

            f = 2 ** (model.decoder.num_resolutions - 1)

            make_cutouts = flavordict[flavor](
                cut_size, args.mse_cutn, cut_pow=args.mse_cut_pow, augs=args.augs
            )

            # make_cutouts = MakeCutouts(cut_size, args.mse_cutn, cut_pow=args.mse_cut_pow,augs=args.augs)
            if args.altprompts:
                self.usealtprompts = True
                self.alt_make_cutouts = flavordict[flavor](
                    cut_size,
                    args.mse_cutn,
                    cut_pow=args.alt_mse_cut_pow,
                    augs=args.altaugs,
                )
                # self.alt_make_cutouts = MakeCutouts(cut_size, args.mse_cutn, cut_pow=args.alt_mse_cut_pow,augs=args.altaugs)

            if self.args.is_gumbel:
                n_toks = model.quantize.n_embed
            else:
                n_toks = model.quantize.n_e

            toksX, toksY = args.size[0] // f, args.size[1] // f
            sideX, sideY = toksX * f, toksY * f

            if self.args.is_gumbel:
                z_min = model.quantize.embed.weight.min(dim=0).values[
                    None, :, None, None
                ]
                z_max = model.quantize.embed.weight.max(dim=0).values[
                    None, :, None, None
                ]
            else:
                z_min = model.quantize.embedding.weight.min(dim=0).values[
                    None, :, None, None
                ]
                z_max = model.quantize.embedding.weight.max(dim=0).values[
                    None, :, None, None
                ]

            from PIL import Image
            import cv2

            # -------
            working_dir = self.args.folder_name

            if self.args.init_image != "":
                img_0 = cv2.imread(init_image)
                z, *_ = model.encode(
                    TF.to_tensor(img_0).to(device).unsqueeze(0) * 2 - 1
                )
            elif not os.path.isfile(f"{working_dir}/steps/{i:04d}.png"):
                one_hot = F.one_hot(
                    torch.randint(n_toks, [toksY * toksX], device=device), n_toks
                ).float()
                if self.args.is_gumbel:
                    z = one_hot @ model.quantize.embed.weight
                else:
                    z = one_hot @ model.quantize.embedding.weight
                z = z.view([-1, toksY, toksX, e_dim]).permute(0, 3, 1, 2)
            else:
                center = (1 * img_0.shape[1] // 2, 1 * img_0.shape[0] // 2)
                trans_mat = np.float32([[1, 0, 10], [0, 1, 10]])
                rot_mat = cv2.getRotationMatrix2D(center, 10, 20)

                trans_mat = np.vstack([trans_mat, [0, 0, 1]])
                rot_mat = np.vstack([rot_mat, [0, 0, 1]])
                transformation_matrix = np.matmul(rot_mat, trans_mat)

                img_0 = cv2.warpPerspective(
                    img_0,
                    transformation_matrix,
                    (img_0.shape[1], img_0.shape[0]),
                    borderMode=cv2.BORDER_WRAP,
                )
                z, *_ = model.encode(
                    TF.to_tensor(img_0).to(device).unsqueeze(0) * 2 - 1
                )

                def save_output(i, img, suffix="zoomed"):
                    filename = f"{working_dir}/steps/{i:04}{'_' + suffix if suffix else ''}.png"
                    imageio.imwrite(filename, np.array(img))

                save_output(i, img_0)
            # -------
            if args.init_image:
                pil_image = Image.open(args.init_image).convert("RGB")
                pil_image = pil_image.resize((sideX, sideY), Image.LANCZOS)
                z, *_ = model.encode(
                    TF.to_tensor(pil_image).to(device).unsqueeze(0) * 2 - 1
                )
            else:
                one_hot = F.one_hot(
                    torch.randint(n_toks, [toksY * toksX], device=device), n_toks
                ).float()
                if self.args.is_gumbel:
                    z = one_hot @ model.quantize.embed.weight
                else:
                    z = one_hot @ model.quantize.embedding.weight
                z = z.view([-1, toksY, toksX, e_dim]).permute(0, 3, 1, 2)
            z = EMATensor(z, args.ema_val)

            if args.mse_with_zeros and not args.init_image:
                z_orig = torch.zeros_like(z.tensor)
            else:
                z_orig = z.tensor.clone()
            z.requires_grad_(True)
            # opt = optim.AdamW(z.parameters(), lr=args.mse_step_size, weight_decay=0.00000000)
            print("Step size inside:", args.step_size)
            if self.normal_flip_optim == True:
                if randint(1, 2) == 1:
                    opt = torch.optim.AdamW(
                        z.parameters(), lr=args.step_size, weight_decay=0.00000000
                    )
                    # opt = Ranger21(z.parameters(), lr=args.step_size, weight_decay=0.00000000)
                else:
                    opt = optim.DiffGrad(
                        z.parameters(), lr=args.step_size, weight_decay=0.00000000
                    )
            else:
                opt = torch.optim.AdamW(
                    z.parameters(), lr=args.step_size, weight_decay=0.00000000
                )

            self.cur_step_size = args.mse_step_size

            normalize = transforms.Normalize(
                mean=[0.48145466, 0.4578275, 0.40821073],
                std=[0.26862954, 0.26130258, 0.27577711],
            )

            pMs = []
            altpMs = []

            for prompt in args.prompts:
                txt, weight, stop = parse_prompt(prompt)
                embed = perceptor.encode_text(clip.tokenize(txt).to(device)).float()
                pMs.append(Prompt(embed, weight, stop).to(device))

            for prompt in args.altprompts:
                txt, weight, stop = parse_prompt(prompt)
                embed = perceptor.encode_text(clip.tokenize(txt).to(device)).float()
                altpMs.append(Prompt(embed, weight, stop).to(device))

            from PIL import Image

            for prompt in args.image_prompts:
                path, weight, stop = parse_prompt(prompt)
                img = resize_image(Image.open(path).convert("RGB"), (sideX, sideY))
                batch = make_cutouts(TF.to_tensor(img).unsqueeze(0).to(device))
                embed = perceptor.encode_image(normalize(batch)).float()
                pMs.append(Prompt(embed, weight, stop).to(device))

            for seed, weight in zip(args.noise_prompt_seeds, args.noise_prompt_weights):
                gen = torch.Generator().manual_seed(seed)
                embed = torch.empty([1, perceptor.visual.output_dim]).normal_(
                    generator=gen
                )
                pMs.append(Prompt(embed, weight).to(device))
                if self.usealtprompts:
                    altpMs.append(Prompt(embed, weight).to(device))

            self.model, self.perceptor = model, perceptor
            self.make_cutouts = make_cutouts
            self.imageSize = (sideX, sideY)
            self.prompts = pMs
            self.altprompts = altpMs
            self.opt = opt
            self.normalize = normalize
            self.z, self.z_orig, self.z_min, self.z_max = z, z_orig, z_min, z_max
            self.setup_metadata(args2.seed)
            self.mse_weight = self.args.init_weight

        def synth(self, z):
            if self.args.is_gumbel:
                z_q = vector_quantize(
                    z.movedim(1, 3), self.model.quantize.embed.weight
                ).movedim(3, 1)
            else:
                z_q = vector_quantize(
                    z.movedim(1, 3), self.model.quantize.embedding.weight
                ).movedim(3, 1)
            return clamp_with_grad(self.model.decode(z_q).add(1).div(2), 0, 1)

        def add_metadata(self, path, i):
            imfile = PngImageFile(path)
            meta = PngInfo()
            step_meta = {"iterations": i}
            step_meta.update(self.metadata)
            # meta.add_itxt('vqgan-params', json.dumps(step_meta), zip=True)
            imfile.save(path, pnginfo=meta)
            # Hey you. This one's for Glooperpogger#7353 on Discord (Gloop has a gun), they are a nice snek

        @torch.no_grad()
        def checkin(self, i, losses, x):
            out = self.synth(self.z.average)
            
            batchpath = "./"
            TF.to_pil_image(out[0].cpu()).save(args2.image_file)
            
        def unique_index(self, batchpath):
            i = 0
            while i < 10000:
                if os.path.isfile(batchpath + "/" + str(i) + ".png"):
                    i = i + 1
                else:
                    return batchpath + "/" + str(i) + ".png"

        def ascend_txt(self, i):
            out = self.synth(self.z.tensor)
            iii = self.perceptor.encode_image(
                self.normalize(self.make_cutouts(out))
            ).float()

            result = []
            if self.args.init_weight and self.mse_weight > 0:
                result.append(
                    F.mse_loss(self.z.tensor, self.z_orig) * self.mse_weight / 2
                )

            for prompt in self.prompts:
                result.append(prompt(iii))

            if self.usealtprompts:
                iii = self.perceptor.encode_image(
                    self.normalize(self.alt_make_cutouts(out))
                ).float()
                for prompt in self.altprompts:
                    result.append(prompt(iii))

            return result

        def train(self, i, x):
            self.opt.zero_grad()
            mse_decay = self.args.mse_decay
            mse_decay_rate = self.args.mse_decay_rate
            lossAll = self.ascend_txt(i)

            sys.stdout.write("Iteration {}".format(i) + "\n")
            sys.stdout.flush()
            if i % (args2.iterations-2) == 0:
                self.checkin(i, lossAll, x)

            loss = sum(lossAll)
            loss.backward()
            self.opt.step()
            with torch.no_grad():
                if (
                    self.mse_weight > 0
                    and self.args.init_weight
                    and i > 0
                    and i % mse_decay_rate == 0
                ):
                    if self.args.is_gumbel:
                        self.z_orig = vector_quantize(
                            self.z.average.movedim(1, 3),
                            self.model.quantize.embed.weight,
                        ).movedim(3, 1)
                    else:
                        self.z_orig = vector_quantize(
                            self.z.average.movedim(1, 3),
                            self.model.quantize.embedding.weight,
                        ).movedim(3, 1)
                    if self.mse_weight - mse_decay > 0:
                        self.mse_weight = self.mse_weight - mse_decay
                        # print(f"updated mse weight: {self.mse_weight}")
                    else:
                        self.mse_weight = 0
                        self.make_cutouts = flavordict[flavor](
                            self.perceptor.visual.input_resolution,
                            args.cutn,
                            cut_pow=args.cut_pow,
                            augs=args.augs,
                        )
                        if self.usealtprompts:
                            self.alt_make_cutouts = flavordict[flavor](
                                self.perceptor.visual.input_resolution,
                                args.cutn,
                                cut_pow=args.alt_cut_pow,
                                augs=args.altaugs,
                            )
                        self.z = EMATensor(self.z.average, args.ema_val)
                        self.new_step_size = args.step_size
                        self.opt = torch.optim.AdamW(
                            self.z.parameters(),
                            lr=args.step_size,
                            weight_decay=0.00000000,
                        )
                        # print(f"updated mse weight: {self.mse_weight}")
                if i > args.mse_end:
                    if (
                        args.step_size != args.final_step_size
                        and args.max_iterations > 0
                    ):
                        progress = (i - args.mse_end) / (args.max_iterations)
                        self.cur_step_size = lerp(step_size, final_step_size, progress)
                        for g in self.opt.param_groups:
                            g["lr"] = self.cur_step_size

        def run(self, x):
            j = 0
            try:
                print("Step size: ", args.step_size)
                print("Step MSE size: ", args.mse_step_size)
                before_start_time = time.perf_counter()
                total_steps = int(args.max_iterations + args.mse_end) - 1
                for _ in range(total_steps):
                    self.train(j, x)
                    if j > 0 and j % args.mse_decay_rate == 0 and self.mse_weight > 0:
                        self.z = EMATensor(self.z.average, args.ema_val)
                        self.opt = torch.optim.AdamW(
                            self.z.parameters(),
                            lr=args.mse_step_size,
                            weight_decay=0.00000000,
                        )
                    if j >= total_steps:
                        break
                    self.z.update()
                    j += 1
                    time_past_seconds = time.perf_counter() - before_start_time
                    iterations_per_second = j / time_past_seconds
                    time_left = (total_steps - j) / iterations_per_second
                    percentage = round((j / (total_steps + 1)) * 100)

                import shutil
                import os

                #image_data = Image.open(args2.image_file)
                #os.remove(args2.image_file)
                #return(image_data)

            except KeyboardInterrupt:
                pass

    def add_noise(img):

        # Getting the dimensions of the image
        row, col = img.shape

        # Randomly pick some pixels in the
        # image for coloring them white
        # Pick a random number between 300 and 10000
        number_of_pixels = random.randint(300, 10000)
        for i in range(number_of_pixels):

            # Pick a random y coordinate
            y_coord = random.randint(0, row - 1)

            # Pick a random x coordinate
            x_coord = random.randint(0, col - 1)

            # Color that pixel to white
            img[y_coord][x_coord] = 255

        # Randomly pick some pixels in
        # the image for coloring them black
        # Pick a random number between 300 and 10000
        number_of_pixels = random.randint(300, 10000)
        for i in range(number_of_pixels):

            # Pick a random y coordinate
            y_coord = random.randint(0, row - 1)

            # Pick a random x coordinate
            x_coord = random.randint(0, col - 1)

            # Color that pixel to black
            img[y_coord][x_coord] = 0

        return img

    import io
    import base64

    def image_to_data_url(img, ext):
        img_byte_arr = io.BytesIO()
        img.save(img_byte_arr, format=ext)
        img_byte_arr = img_byte_arr.getvalue()
        # ext = filename.split('.')[-1]
        prefix = f"data:image/{ext};base64,"
        return prefix + base64.b64encode(img_byte_arr).decode("utf-8")

    import torch
    import math

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    def rand_perlin_2d(
        shape, res, fade=lambda t: 6 * t**5 - 15 * t**4 + 10 * t**3
    ):
        delta = (res[0] / shape[0], res[1] / shape[1])
        d = (shape[0] // res[0], shape[1] // res[1])

        grid = (
            torch.stack(
                torch.meshgrid(
                    torch.arange(0, res[0], delta[0]), torch.arange(0, res[1], delta[1])
                ),
                dim=-1,
            )
            % 1
        )
        angles = 2 * math.pi * torch.rand(res[0] + 1, res[1] + 1)
        gradients = torch.stack((torch.cos(angles), torch.sin(angles)), dim=-1)

        tile_grads = (
            lambda slice1, slice2: gradients[
                slice1[0] : slice1[1], slice2[0] : slice2[1]
            ]
            .repeat_interleave(d[0], 0)
            .repeat_interleave(d[1], 1)
        )
        dot = lambda grad, shift: (
            torch.stack(
                (
                    grid[: shape[0], : shape[1], 0] + shift[0],
                    grid[: shape[0], : shape[1], 1] + shift[1],
                ),
                dim=-1,
            )
            * grad[: shape[0], : shape[1]]
        ).sum(dim=-1)

        n00 = dot(tile_grads([0, -1], [0, -1]), [0, 0])
        n10 = dot(tile_grads([1, None], [0, -1]), [-1, 0])
        n01 = dot(tile_grads([0, -1], [1, None]), [0, -1])
        n11 = dot(tile_grads([1, None], [1, None]), [-1, -1])
        t = fade(grid[: shape[0], : shape[1]])
        return math.sqrt(2) * torch.lerp(
            torch.lerp(n00, n10, t[..., 0]), torch.lerp(n01, n11, t[..., 0]), t[..., 1]
        )

    def rand_perlin_2d_octaves(desired_shape, octaves=1, persistence=0.5):
        shape = torch.tensor(desired_shape)
        shape = 2 ** torch.ceil(torch.log2(shape))
        shape = shape.type(torch.int)

        max_octaves = int(
            min(
                octaves,
                math.log(shape[0]) / math.log(2),
                math.log(shape[1]) / math.log(2),
            )
        )
        res = torch.floor(shape / 2**max_octaves).type(torch.int)

        noise = torch.zeros(list(shape))
        frequency = 1
        amplitude = 1
        for _ in range(max_octaves):
            noise += amplitude * rand_perlin_2d(
                shape, (frequency * res[0], frequency * res[1])
            )
            frequency *= 2
            amplitude *= persistence

        return noise[: desired_shape[0], : desired_shape[1]]

    def rand_perlin_rgb(desired_shape, amp=0.1, octaves=6):
        r = rand_perlin_2d_octaves(desired_shape, octaves)
        g = rand_perlin_2d_octaves(desired_shape, octaves)
        b = rand_perlin_2d_octaves(desired_shape, octaves)
        rgb = (torch.stack((r, g, b)) * amp + 1) * 0.5
        return rgb.unsqueeze(0).clip(0, 1).to(device)

    def pyramid_noise_gen(shape, octaves=5, decay=1.0):
        n, c, h, w = shape
        noise = torch.zeros([n, c, 1, 1])
        max_octaves = int(min(math.log(h) / math.log(2), math.log(w) / math.log(2)))
        if octaves is not None and 0 < octaves:
            max_octaves = min(octaves, max_octaves)
        for i in reversed(range(max_octaves)):
            h_cur, w_cur = h // 2**i, w // 2**i
            noise = F.interpolate(
                noise, (h_cur, w_cur), mode="bicubic", align_corners=False
            )
            noise += (torch.randn([n, c, h_cur, w_cur]) / max_octaves) * decay ** (
                max_octaves - (i + 1)
            )
        return noise

    def rand_z(model, toksX, toksY):
        e_dim = model.quantize.e_dim
        n_toks = model.quantize.n_e
        z_min = model.quantize.embedding.weight.min(dim=0).values[None, :, None, None]
        z_max = model.quantize.embedding.weight.max(dim=0).values[None, :, None, None]

        one_hot = F.one_hot(
            torch.randint(n_toks, [toksY * toksX], device=device), n_toks
        ).float()
        z = one_hot @ model.quantize.embedding.weight
        z = z.view([-1, toksY, toksX, e_dim]).permute(0, 3, 1, 2)

        return z

    def make_rand_init(
        mode,
        model,
        perlin_octaves,
        perlin_weight,
        pyramid_octaves,
        pyramid_decay,
        toksX,
        toksY,
        f,
    ):

        if mode == "VQGAN ZRand":
            return rand_z(model, toksX, toksY)
        elif mode == "Perlin Noise":
            rand_init = rand_perlin_rgb(
                (toksY * f, toksX * f), perlin_weight, perlin_octaves
            )
            z, *_ = model.encode(rand_init * 2 - 1)
            return z
        elif mode == "Pyramid Noise":
            rand_init = pyramid_noise_gen(
                (1, 3, toksY * f, toksX * f), pyramid_octaves, pyramid_decay
            ).to(device)
            rand_init = (rand_init * 0.5 + 0.5).clip(0, 1)
            z, *_ = model.encode(rand_init * 2 - 1)
            return z

    ##################### JUICY MESS ###################################
    import os

    imagenet_1024 = False  # @param {type:"boolean"}
    imagenet_16384 = True  # @param {type:"boolean"}
    gumbel_8192 = False  # @param {type:"boolean"}
    sber_gumbel = False  # @param {type:"boolean"}
    # imagenet_cin = False #@param {type:"boolean"}
    coco = False  # @param {type:"boolean"}
    coco_1stage = False  # @param {type:"boolean"}
    faceshq = False  # @param {type:"boolean"}
    wikiart_1024 = False  # @param {type:"boolean"}
    wikiart_16384 = False  # @param {type:"boolean"}
    wikiart_7mil = False  # @param {type:"boolean"}
    sflckr = False  # @param {type:"boolean"}

    ##@markdown Experimental models (won't probably work, if you know how to make them work, go ahead :D):
    # celebahq = False #@param {type:"boolean"}
    # ade20k = False #@param {type:"boolean"}
    # drin = False #@param {type:"boolean"}
    # gumbel = False #@param {type:"boolean"}
    # gumbel_8192 = False #@param {type:"boolean"}

    # Configure and run the model"""

    # Commented out IPython magic to ensure Python compatibility.
    # @title <font color="lightgreen" size="+3">←</font> <font size="+2">🏃‍♂️</font> **Configure & Run** <font size="+2">🏃‍♂️</font>

    import os
    import random
    import cv2

    # from google.colab import drive
    from PIL import Image
    from importlib import reload

    reload(PIL.TiffTags)
    # %cd /content/
    # @markdown >`prompts` is the list of prompts to give to the AI, separated by `|`. With more than one, it will attempt to mix them together. You can add weights to different parts of the prompt by adding a `p:x` at the end of a prompt (before a `|`) where `p` is the prompt and `x` is the weight.

    # prompts = "A fantasy landscape, by Greg Rutkowski. A lush mountain.:1 | Trending on ArtStation, unreal engine. 4K HD, realism.:0.63" #@param {type:"string"}

    prompts = args2.prompt

    width = args2.sizex  # @param {type:"number"}
    height = args2.sizey  # @param {type:"number"}

    # model = "ImageNet 16384" #@param ['ImageNet 16384', 'ImageNet 1024', "Gumbel 8192", "Sber Gumbel", 'WikiArt 1024', 'WikiArt 16384', 'WikiArt 7mil', 'COCO-Stuff', 'COCO 1 Stage', 'FacesHQ', 'S-FLCKR']
    #model = args2.vqgan_model

    #if model == "Gumbel 8192" or model == "Sber Gumbel":
    #    is_gumbel = True
    #else:
    #    is_gumbel = False
    is_gumbel = False
    ##@markdown The flavor effects the output greatly. Each has it's own characteristics and depending on what you choose, you'll get a widely different result with the same prompt and seed. Ginger is the default, nothing special. Cumin results more of a painting, while Holywater makes everythng super funky and/or colorful. Custom is a custom flavor, use the utilities above.
    #   Type "old_holywater" to use the old holywater flavor from Hypertron V1
    flavor = (
        args2.flavor
    )  #'ginger' #@param ["ginger", "cumin", "holywater", "zynth", "wyvern", "aaron", "moth", "juu", "custom"]
    template = (
        args2.template
    )  # @param ["none", "----------Parameter Tweaking----------", "Balanced", "Detailed", "Consistent Creativity", "Realistic", "Smooth", "Subtle MSE", "Hyper Fast Results", "----------Complete Overhaul----------", "flag", "planet", "creature", "human", "----------Sizes----------", "Size: Square", "Size: Landscape", "Size: Poster", "----------Prompt Modifiers----------", "Better - Fast", "Better - Slow", "Movie Poster", "Negative Prompt", "Better Quality"]
    ##@markdown To use initial or target images, upload it on the left in the file browser. You can also use previous outputs by putting its path below, e.g. `batch_01/0.png`. If your previous output is saved to drive, you can use the checkbox so you don't have to type the whole path.
    init = "default noise"  # @param ["default noise", "image", "random image", "salt and pepper noise", "salt and pepper noise on init image"]

    if args2.seed_image is None:
        init_image = ""  # args2.seed_image #""#@param {type:"string"}
    else:
        init_image = args2.seed_image  # ""#@param {type:"string"}

    if init == "random image":
        url = (
            "https://picsum.photos/"
            + str(width)
            + "/"
            + str(height)
            + "?blur="
            + str(random.randrange(5, 10))
        )
        urllib.request.urlretrieve(url, "Init_Img/Image.png")
        init_image = "Init_Img/Image.png"
    elif init == "random image clear":
        url = "https://source.unsplash.com/random/" + str(width) + "x" + str(height)
        urllib.request.urlretrieve(url, "Init_Img/Image.png")
        init_image = "Init_Img/Image.png"
    elif init == "random image clear 2":
        url = "https://loremflickr.com/" + str(width) + "/" + str(height)
        urllib.request.urlretrieve(url, "Init_Img/Image.png")
        init_image = "Init_Img/Image.png"
    elif init == "salt and pepper noise":
        urllib.request.urlretrieve(
            "https://i.stack.imgur.com/olrL8.png", "Init_Img/Image.png"
        )
        import cv2

        img = cv2.imread("Init_Img/Image.png", 0)
        cv2.imwrite("Init_Img/Image.png", add_noise(img))
        init_image = "Init_Img/Image.png"
    elif init == "salt and pepper noise on init image":
        img = cv2.imread(init_image, 0)
        cv2.imwrite("Init_Img/Image.png", add_noise(img))
        init_image = "Init_Img/Image.png"
    elif init == "perlin noise":
        # For some reason Colab started crashing from this
        import noise
        import numpy as np
        from PIL import Image

        shape = (width, height)
        scale = 100
        octaves = 6
        persistence = 0.5
        lacunarity = 2.0
        seed = np.random.randint(0, 100000)
        world = np.zeros(shape)
        for i in range(shape[0]):
            for j in range(shape[1]):
                world[i][j] = noise.pnoise2(
                    i / scale,
                    j / scale,
                    octaves=octaves,
                    persistence=persistence,
                    lacunarity=lacunarity,
                    repeatx=1024,
                    repeaty=1024,
                    base=seed,
                )
        Image.fromarray(prep_world(world)).convert("L").save("Init_Img/Image.png")
        init_image = "Init_Img/Image.png"
    elif init == "black and white":
        url = "https://www.random.org/bitmaps/?format=png&width=300&height=300&zoom=1"
        urllib.request.urlretrieve(url, "Init_Img/Image.png")
        init_image = "Init_Img/Image.png"

    seed = args2.seed  # @param {type:"number"}
    # @markdown >iterations excludes iterations spent during the mse phase, if it is being used. The total iterations will be more if `mse_decay_rate` is more than 0.
    iterations = args2.iterations  # @param {type:"number"}
    transparent_png = False  # @param {type:"boolean"}

    # @markdown <font size="+3">⚠</font> **ADVANCED SETTINGS** <font size="+3">⚠</font>
    # @markdown ---
    # @markdown ---

    # @markdown >If you want to make multiple images with different prompts, use this. Seperate different prompts for different images with a `~` (example: `prompt1~prompt1~prompt3`). Iter is the iterations you want each image to run for. If you use MSE, I'd type a pretty low number (about 10).
    multiple_prompt_batches = False  # @param {type:"boolean"}
    multiple_prompt_batches_iter = 300  # @param {type:"number"}

    # @markdown >`folder_name` is the name of the folder you want to output your result(s) to. Previous outputs will NOT be overwritten. By default, it will be saved to the colab's root folder, but the `save_to_drive` checkbox will save it to `MyDrive\VQGAN_Output` instead.
    folder_name = ""  # @param {type:"string"}
    save_to_drive = False  # @param {type:"boolean"}
    prompt_experiment = "None"  # @param ['None', 'Fever Dream', 'Philipuss’s Basement', 'Vivid Turmoil', 'Mad Dad', 'Platinum', 'Negative Energy']
    if prompt_experiment == "Fever Dream":
        prompts = "<|startoftext|>" + prompts + "<|endoftext|>"
    elif prompt_experiment == "Vivid Turmoil":
        prompts = prompts.replace(" ", "¡")
        prompts = "¬" + prompts + "®"
    elif prompt_experiment == "Mad Dad":
        prompts = prompts.replace(" ", "\\s+")
    elif prompt_experiment == "Platinum":
        prompts = "~!" + prompts + "!~"
        prompts = prompts.replace(" ", "</w>")
    elif prompt_experiment == "Philipuss’s Basement":
        prompts = "<|startoftext|>" + prompts
        prompts = prompts.replace(" ", "<|endoftext|><|startoftext|>")
    elif prompt_experiment == "Lowercase":
        prompts = prompts.lower()

    
    # @markdown >Target images work like prompts, write the name of the image. You can add multiple target images by seperating them with a `|`.
    target_images = ""  # @param {type:"string"}

    # @markdown ><font size="+2">☢</font> Advanced values. Values of cut_pow below 1 prioritize structure over detail, and vice versa for above 1. Step_size affects how wild the change between iterations is, and if final_step_size is not 0, step_size will interpolate towards it over time.
    # @markdown >Cutn affects on 'Creativity': less cutout will lead to more random/creative results, sometimes barely readable, while higher values (90+) lead to very stable, photo-like outputs
    cutn = 130  # @param {type:"number"}
    cut_pow = 1  # @param {type:"number"}
    # @markdown >Step_size is like weirdness. Lower: more accurate/realistic, slower; Higher: less accurate/more funky, faster.
    step_size = 0.1  # @param {type:"number"}
    # @markdown >Start_step_size is a temporary step_size that will be active only in the first 10 iterations. It (sometimes) helps with speed. If it's set to 0, it won't be used.
    start_step_size = 0  # @param {type:"number"}
    # @markdown >Final_step_size is a goal step_size which the AI will try and reach. If set to 0, it won't be used.
    final_step_size = 0  # @param {type:"number"}
    if start_step_size <= 0:
        start_step_size = step_size
    if final_step_size <= 0:
        final_step_size = step_size

    # @markdown ---

    # @markdown >EMA maintains a moving average of trained parameters. The number below is the rate of decay (higher means slower).
    ema_val = 0.98  # @param {type:"number"}

    # @markdown >If you want to keep starting from the same point, set `gen_seed` to a positive number. `-1` will make it random every time.
    gen_seed = -1  # @param {type:'number'}

    init_image_in_drive = False  # @param {type:"boolean"}
    if init_image_in_drive and init_image:
        init_image = "/content/drive/MyDrive/VQGAN_Output/" + init_image

    images_interval = args2.update  # @param {type:"number"}

    # I think you should give "Free Thoughts on the Proceedings of the Continental Congress" a read, really funny and actually well-written, Hamilton presented it in a bad light IMO.

    batch_size = 1  # @param {type:"number"}

    # @markdown ---

    # @markdown <font size="+1">🔮</font> **MSE Regulization** <font size="+1">🔮</font>
    # Based off of this notebook: https://colab.research.google.com/drive/1gFn9u3oPOgsNzJWEFmdK-N9h_y65b8fj?usp=sharing - already in credits
    use_mse = args2.mse  # @param {type:"boolean"}
    mse_images_interval = images_interval
    mse_init_weight = 0.2  # @param {type:"number"}
    mse_decay_rate = 160  # @param {type:"number"}
    mse_epoches = 10  # @param {type:"number"}
    ##@param {type:"number"}

    # @markdown >Overwrites the usual values during the mse phase if included. If any value is 0, its normal counterpart is used instead.
    mse_with_zeros = True  # @param {type:"boolean"}
    mse_step_size = 0.87  # @param {type:"number"}
    mse_cutn = 42  # @param {type:"number"}
    mse_cut_pow = 0.75  # @param {type:"number"}

    # @markdown >normal_flip_optim flips between two optimizers during the normal (not MSE) phase. It can improve quality, but it's kind of experimental, use at your own risk.
    normal_flip_optim = True  # @param {type:"boolean"}
    ##@markdown >Adding some TV may make the image blurrier but also helps to get rid of noise. A good value to try might be 0.1.
    # tv_weight = 0.1 #@param {type:'number'}
    # @markdown ---

    # @markdown >`altprompts` is a set of prompts that take in a different augmentation pipeline, and can have their own cut_pow. At the moment, the default "alt augment" settings flip the picture cutouts upside down before evaluating. This can be good for optical illusion images. If either cut_pow value is 0, it will use the same value as the normal prompts.
    altprompts = ""  # @param {type:"string"}
    altprompt_mode = "flipped"
    ##@param ["normal" , "flipped", "sideways"]
    alt_cut_pow = 0  # @param {type:"number"}
    alt_mse_cut_pow = 0  # @param {type:"number"}
    # altprompt_type = "upside-down" #@param ['upside-down', 'as']

    ##@markdown ---
    ##@markdown <font size="+1">💫</font> **Zooming and Moving** <font size="+1">💫</font>
    zoom = False
    ##@param {type:"boolean"}
    zoom_speed = 100
    ##@param {type:"number"}
    zoom_frequency = 20
    ##@param {type:"number"}

    # @markdown ---
    # @markdown On an unrelated note, if you get any errors while running this, restart the runtime and run the first cell again. If that doesn't work either, message me on Discord (Philipuss#4066).

    model_names = {
        "vqgan_imagenet_f16_16384": "vqgan_imagenet_f16_16384",
        "ImageNet 1024": "vqgan_imagenet_f16_1024",
        "Gumbel 8192": "gumbel_8192",
        "Sber Gumbel": "sber_gumbel",
        "imagenet_cin": "imagenet_cin",
        "WikiArt 1024": "wikiart_1024",
        "WikiArt 16384": "wikiart_16384",
        "COCO-Stuff": "coco",
        "FacesHQ": "faceshq",
        "S-FLCKR": "sflckr",
        "WikiArt 7mil": "wikiart_7mil",
        "COCO 1 Stage": "coco_1stage",
    }

    if template == "Better - Fast":
        prompts = prompts + ". Detailed artwork. ArtStationHQ. unreal engine. 4K HD."
    elif template == "Better - Slow":
        prompts = (
            prompts
            + ". Detailed artwork. Trending on ArtStation. unreal engine. | Rendered in Maya. "
            + prompts
            + ". 4K HD."
        )
    elif template == "Movie Poster":
        prompts = prompts + ". Movie poster. Rendered in unreal engine. ArtStationHQ."
        width = 400
        height = 592
    elif template == "flag":
        prompts = (
            "A photo of a flag of the country "
            + prompts
            + " | Flag of "
            + prompts
            + ". White background."
        )
        # import cv2
        # img = cv2.imread('templates/flag.png', 0)
        # cv2.imwrite('templates/final_flag.png', add_noise(img))
        init_image = "templates/flag.png"
        transparent_png = True
    elif template == "planet":
        import cv2

        img = cv2.imread("templates/planet.png", 0)
        cv2.imwrite("templates/final_planet.png", add_noise(img))
        prompts = (
            "A photo of the planet "
            + prompts
            + ". Planet in the middle with black background. | The planet of "
            + prompts
            + ". Photo of a planet. Black background. Trending on ArtStation. | Colorful."
        )
        init_image = "templates/final_planet.png"
    elif template == "creature":
        # import cv2
        # img = cv2.imread('templates/planet.png', 0)
        # cv2.imwrite('templates/final_planet.png', add_noise(img))
        prompts = (
            "A photo of a creature with "
            + prompts
            + ". Animal in the middle with white background. | The creature has "
            + prompts
            + ". Photo of a creature/animal. White background. Detailed image of a creature. | White background."
        )
        init_image = "templates/creature.png"
        # transparent_png = True
    elif template == "Detailed":
        prompts = (
            prompts
            + ", by Puer Udger. Detailed artwork, trending on artstation. 4K HD, realism."
        )
        flavor = "cumin"
    elif template == "human":
        init_image = "/content/templates/human.png"
    elif template == "Realistic":
        cutn = 200
        step_size = 0.03
        cut_pow = 0.2
        flavor = "holywater"
    elif template == "Consistent Creativity":
        flavor = "cumin"
        cut_pow = 0.01
        cutn = 136
        step_size = 0.08
        mse_step_size = 0.41
        mse_cut_pow = 0.3
        ema_val = 0.99
        normal_flip_optim = False
    elif template == "Smooth":
        flavor = "wyvern"
        step_size = 0.10
        cutn = 120
        normal_flip_optim = False
        tv_weight = 10
    elif template == "Subtle MSE":
        mse_init_weight = 0.07
        mse_decay_rate = 130
        mse_step_size = 0.2
        mse_cutn = 100
        mse_cut_pow = 0.6
    elif template == "Balanced":
        cutn = 130
        cut_pow = 1
        step_size = 0.16
        final_step_size = 0
        ema_val = 0.98
        mse_init_weight = 0.2
        mse_decay_rate = 130
        mse_with_zeros = True
        mse_step_size = 0.9
        mse_cutn = 50
        mse_cut_pow = 0.8
        normal_flip_optim = True
    elif template == "Size: Square":
        width = 450
        height = 450
    elif template == "Size: Landscape":
        width = 480
        height = 336
    elif template == "Size: Poster":
        width = 336
        height = 480
    elif template == "Negative Prompt":
        prompts = prompts.replace(":", ":-")
        prompts = prompts.replace(":--", ":")
    elif template == "Hyper Fast Results":
        step_size = 1
        ema_val = 0.3
        cutn = 30
    elif template == "Better Quality":
        prompts = (
            prompts + ":1 | Watermark, blurry, cropped, confusing, cut, incoherent:-1"
        )

    mse_decay = 0

    if use_mse == False:
        mse_init_weight = 0.0
    else:
        mse_decay = mse_init_weight / mse_epoches

   
    if seed == -1:
        seed = None
    if init_image == "None":
        init_image = None
    if target_images == "None" or not target_images:
        target_images = []
    else:
        target_images = target_images.split("|")
        target_images = [image.strip() for image in target_images]

    prompts = [phrase.strip() for phrase in prompts.split("|")]
    if prompts == [""]:
        prompts = []

    altprompts = [phrase.strip() for phrase in altprompts.split("|")]
    if altprompts == [""]:
        altprompts = []

    if mse_images_interval == 0:
        mse_images_interval = images_interval
    if mse_step_size == 0:
        mse_step_size = step_size
    if mse_cutn == 0:
        mse_cutn = cutn
    if mse_cut_pow == 0:
        mse_cut_pow = cut_pow
    if alt_cut_pow == 0:
        alt_cut_pow = cut_pow
    if alt_mse_cut_pow == 0:
        alt_mse_cut_pow = mse_cut_pow

    augs = nn.Sequential(
        K.RandomHorizontalFlip(p=0.5),
        K.RandomSharpness(0.3, p=0.4),
        K.RandomGaussianBlur((3, 3), (4.5, 4.5), p=0.3),
        # K.RandomGaussianNoise(p=0.5),
        # K.RandomElasticTransform(kernel_size=(33, 33), sigma=(7,7), p=0.2),
        K.RandomAffine(
            degrees=30, translate=0.1, p=0.8, padding_mode="border"
        ),  # padding_mode=2
        K.RandomPerspective(
            0.2,
            p=0.4,
        ),
        K.ColorJitter(hue=0.01, saturation=0.01, p=0.7),
        K.RandomGrayscale(p=0.1),
    )

    if altprompt_mode == "normal":
        altaugs = nn.Sequential(
            K.RandomRotation(degrees=90.0, return_transform=True),
            K.RandomHorizontalFlip(p=0.5),
            K.RandomSharpness(0.3, p=0.4),
            K.RandomGaussianBlur((3, 3), (4.5, 4.5), p=0.3),
            # K.RandomGaussianNoise(p=0.5),
            # K.RandomElasticTransform(kernel_size=(33, 33), sigma=(7,7), p=0.2),
            K.RandomAffine(
                degrees=30, translate=0.1, p=0.8, padding_mode="border"
            ),  # padding_mode=2
            K.RandomPerspective(
                0.2,
                p=0.4,
            ),
            K.ColorJitter(hue=0.01, saturation=0.01, p=0.7),
            K.RandomGrayscale(p=0.1),
        )
    elif altprompt_mode == "flipped":
        altaugs = nn.Sequential(
            K.RandomHorizontalFlip(p=0.5),
            # K.RandomRotation(degrees=90.0),
            K.RandomVerticalFlip(p=1),
            K.RandomSharpness(0.3, p=0.4),
            K.RandomGaussianBlur((3, 3), (4.5, 4.5), p=0.3),
            # K.RandomGaussianNoise(p=0.5),
            # K.RandomElasticTransform(kernel_size=(33, 33), sigma=(7,7), p=0.2),
            K.RandomAffine(
                degrees=30, translate=0.1, p=0.8, padding_mode="border"
            ),  # padding_mode=2
            K.RandomPerspective(
                0.2,
                p=0.4,
            ),
            K.ColorJitter(hue=0.01, saturation=0.01, p=0.7),
            K.RandomGrayscale(p=0.1),
        )
    elif altprompt_mode == "sideways":
        altaugs = nn.Sequential(
            K.RandomHorizontalFlip(p=0.5),
            # K.RandomRotation(degrees=90.0),
            K.RandomVerticalFlip(p=1),
            K.RandomSharpness(0.3, p=0.4),
            K.RandomGaussianBlur((3, 3), (4.5, 4.5), p=0.3),
            # K.RandomGaussianNoise(p=0.5),
            # K.RandomElasticTransform(kernel_size=(33, 33), sigma=(7,7), p=0.2),
            K.RandomAffine(
                degrees=30, translate=0.1, p=0.8, padding_mode="border"
            ),  # padding_mode=2
            K.RandomPerspective(
                0.2,
                p=0.4,
            ),
            K.ColorJitter(hue=0.01, saturation=0.01, p=0.7),
            K.RandomGrayscale(p=0.1),
        )

    if multiple_prompt_batches:
        prompts_all = str(prompts).split("~")
    else:
        prompts_all = prompts
        multiple_prompt_batches_iter = iterations

    if multiple_prompt_batches:
        mtpl_prmpts_btchs = len(prompts_all)
    else:
        mtpl_prmpts_btchs = 1

    # print(mtpl_prmpts_btchs)

    steps_path = "./"
    zoom_path = "./"

    path = "./"

    iterations = multiple_prompt_batches_iter

    for pr in range(0, mtpl_prmpts_btchs):
        # print(prompts_all[pr].replace('[\'', '').replace('\']', ''))
        if multiple_prompt_batches:
            prompts = prompts_all[pr].replace("['", "").replace("']", "")

        if zoom:
            mdf_iter = round(iterations / zoom_frequency)
        else:
            mdf_iter = 2
            zoom_frequency = iterations

        for iter in range(1, mdf_iter):
            if zoom:
                if iter != 0:
                    image = Image.open("progress.png")
                    area = (0, 0, width - zoom_speed, height - zoom_speed)
                    cropped_img = image.crop(area)
                    cropped_img.show()

                    new_image = cropped_img.resize((width, height))
                    new_image.save("zoom.png")
                    init_image = "zoom.png"

            args = argparse.Namespace(
                prompts=prompts,
                altprompts=altprompts,
                image_prompts=target_images,
                noise_prompt_seeds=[],
                noise_prompt_weights=[],
                size=[width, height],
                init_image=init_image,
                png=transparent_png,
                init_weight=mse_init_weight,
                #vqgan_model=model_names[model],
                step_size=step_size,
                start_step_size=start_step_size,
                final_step_size=final_step_size,
                cutn=cutn,
                cut_pow=cut_pow,
                mse_cutn=mse_cutn,
                mse_cut_pow=mse_cut_pow,
                mse_step_size=mse_step_size,
                display_freq=images_interval,
                mse_display_freq=mse_images_interval,
                max_iterations=zoom_frequency,
                mse_end=0,
                seed=seed,
                folder_name=folder_name,
                save_to_drive=save_to_drive,
                mse_decay_rate=mse_decay_rate,
                mse_decay=mse_decay,
                mse_with_zeros=mse_with_zeros,
                normal_flip_optim=normal_flip_optim,
                ema_val=ema_val,
                augs=augs,
                altaugs=altaugs,
                alt_cut_pow=alt_cut_pow,
                alt_mse_cut_pow=alt_mse_cut_pow,
                is_gumbel=is_gumbel,
                gen_seed=gen_seed,
            )
            mh = ModelHost(args)
            x = 0

            #for x in range(batch_size):
            mh.setup_model(x)
            mh.run(x)
            image_data = Image.open(args2.image_file)
            os.remove(args2.image_file)
            return(image_data)
            #return(last_iter)
            #x = x + 1
          
        if zoom:
            files = os.listdir(steps_path)
            for index, file in enumerate(files):
                os.rename(
                    os.path.join(steps_path, file),
                    os.path.join(
                        steps_path,
                        "".join([str(index + 1 + zoom_frequency * iter), ".png"]),
                    ),
                )
                index = index + 1

            from pathlib import Path
            import shutil

            src_path = steps_path
            trg_path = zoom_path

            for src_file in range(1, mdf_iter):
                shutil.move(os.path.join(src_path, src_file), trg_path)

##################### START GRADIO HERE ############################
image = gr.outputs.Image(type="pil", label="Your result")
#def cvt_2_base64(file_name):
#    with open(file_name , "rb") as image_file :
#        data = base64.b64encode(image_file.read())
#    return data.decode('utf-8')
#base64image = "data:image/jpg;base64,"+cvt_2_base64('flavors.jpg')
#markdown = gr.Markdown("<img src='"+base64image+"' />")
#def test(raw_input):
#    pass
#setattr(markdown, "requires_permissions", False)
#setattr(markdown, "label", "Flavors")
#setattr(markdown, "preprocess", test)
iface = gr.Interface(
    fn=run_all, 
    inputs=[
    gr.inputs.Textbox(label="Prompt - try adding increments to your prompt such as 'oil on canvas', 'a painting', 'a book cover'",default="chalk pastel drawing of a dog wearing a funny hat"),
    gr.inputs.Slider(label="Steps - more steps can increase quality but will take longer to generate",default=50,maximum=250,minimum=1,step=1),
    gr.inputs.Dropdown(label="Flavor",choices=["ginger", "cumin", "holywater", "zynth", "wyvern", "aaron", "moth", "juu", "custom"]),
    #markdown,
    gr.inputs.Dropdown(label="Style",choices=["Default","Balanced","Detailed","Consistent Creativity","Realistic","Smooth","Subtle MSE","Hyper Fast Results"],default="Hyper Fast Results"),
    gr.inputs.Radio(label="Width", choices=[32,64,128,256,512],default=256),
    gr.inputs.Radio(label="Height", choices=[32,64,128,256,512],default=256),
    ], 
    outputs=image,
    title="Generate images from text with VQGAN+CLIP (Hypertron v2)",
    #description="<div>By typing a prompt and pressing submit you can generate images based on this prompt. <a href='https://github.com/CompVis/latent-diffusion' target='_blank'>Latent Diffusion</a> is a text-to-image model created by <a href='https://github.com/CompVis' target='_blank'>CompVis</a>, trained on the <a href='https://laion.ai/laion-400-open-dataset/'>LAION-400M dataset.</a><br>This UI to the model was assembled by <a style='color: rgb(245, 158, 11);font-weight:bold' href='https://twitter.com/multimodalart' target='_blank'>@multimodalart</a></div>",
    #article="<h4 style='font-size: 110%;margin-top:.5em'>Biases acknowledgment</h4><div>Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exarcbates societal biases. According to the <a href='https://arxiv.org/abs/2112.10752' target='_blank'>Latent Diffusion paper</a>:<i> \"Deep learning modules tend to reproduce or exacerbate biases that are already present in the data\"</i>. The model was trained on an unfiltered version the LAION-400M dataset, which scrapped non-curated image-text-pairs from the internet (the exception being the the removal of illegal content) and is meant to be used for research purposes, such as this one. <a href='https://laion.ai/laion-400-open-dataset/' target='_blank'>You can read more on LAION's website</a></div><h4 style='font-size: 110%;margin-top:1em'>Who owns the images produced by this demo?</h4><div>Definetly not me! Probably you do. I say probably because the Copyright discussion about AI generated art is ongoing. So <a href='https://www.theverge.com/2022/2/21/22944335/us-copyright-office-reject-ai-generated-art-recent-entrance-to-paradise' target='_blank'>it may be the case that everything produced here falls automatically into the public domain</a>. But in any case it is either yours or is in the public domain.</div>"
    )
iface.launch(enable_queue=True)