import sys import argparse import math from pathlib import Path import sys import pandas as pd from base64 import b64encode from omegaconf import OmegaConf from PIL import Image from taming.models import cond_transformer, vqgan import torch from os.path import exists as path_exists torch.cuda.empty_cache() from torch import nn import torch.optim as optim from torch import optim from torch.nn import functional as F from torchvision import transforms from torchvision.transforms import functional as TF import torchvision.transforms as T from git.repo.base import Repo if not (path_exists(f"CLIP")): Repo.clone_from("https://github.com/openai/CLIP", "CLIP") from CLIP import clip import gradio as gr import kornia.augmentation as K import numpy as np import subprocess import imageio from PIL import ImageFile, Image import time import base64 import hashlib from PIL.PngImagePlugin import PngImageFile, PngInfo import json import urllib.request from random import randint from pathvalidate import sanitize_filename from huggingface_hub import hf_hub_download import shortuuid import gc device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print("Using device:", device) vqgan_model = hf_hub_download(repo_id="boris/vqgan_f16_16384", filename="model.ckpt") vqgan_config = hf_hub_download(repo_id="boris/vqgan_f16_16384", filename="config.yaml") def load_vqgan_model(config_path, checkpoint_path): config = OmegaConf.load(config_path) if config.model.target == "taming.models.vqgan.VQModel": model = vqgan.VQModel(**config.model.params) model.eval().requires_grad_(False) model.init_from_ckpt(checkpoint_path) elif config.model.target == "taming.models.cond_transformer.Net2NetTransformer": parent_model = cond_transformer.Net2NetTransformer(**config.model.params) parent_model.eval().requires_grad_(False) parent_model.init_from_ckpt(checkpoint_path) model = parent_model.first_stage_model elif config.model.target == "taming.models.vqgan.GumbelVQ": model = vqgan.GumbelVQ(**config.model.params) # print(config.model.params) model.eval().requires_grad_(False) model.init_from_ckpt(checkpoint_path) else: raise ValueError(f"unknown model type: {config.model.target}") del model.loss return model model = load_vqgan_model(vqgan_config, vqgan_model).to(device) perceptor = ( clip.load("ViT-B/32", jit=False)[0] .eval() .requires_grad_(False) .to(device) ) gc.collect() torch.cuda.empty_cache() def run_all(user_input, width, height, template, num_steps, flavor): gc.collect() torch.cuda.empty_cache() import random #if uploaded_file is not None: #uploaded_folder = f"{DefaultPaths.root_path}/uploaded" #if not path_exists(uploaded_folder): # os.makedirs(uploaded_folder) #image_data = uploaded_file.read() #f = open(f"{uploaded_folder}/{uploaded_file.name}", "wb") #f.write(image_data) #f.close() #image_path = f"{uploaded_folder}/{uploaded_file.name}" #pass #else: image_path = None url = shortuuid.uuid() args2 = argparse.Namespace( prompt=user_input, seed=int(random.randint(0, 2147483647)), sizex=width, sizey=height, flavor=flavor, iterations=num_steps, mse=True, update=100, template=template, vqgan_model='ImageNet 16384', seed_image=image_path, image_file=f"{url}.png", #frame_dir=intermediary_folder, ) if args2.seed is not None: import torch import numpy as np np.random.seed(args2.seed) import random random.seed(args2.seed) # next line forces deterministic random values, but causes other issues with resampling (uncomment to see) torch.manual_seed(args2.seed) torch.cuda.manual_seed(args2.seed) torch.cuda.manual_seed_all(args2.seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print("Using device:", device) def noise_gen(shape, octaves=5): n, c, h, w = shape noise = torch.zeros([n, c, 1, 1]) max_octaves = min(octaves, math.log(h) / math.log(2), math.log(w) / math.log(2)) for i in reversed(range(max_octaves)): h_cur, w_cur = h // 2**i, w // 2**i noise = F.interpolate( noise, (h_cur, w_cur), mode="bicubic", align_corners=False ) noise += torch.randn([n, c, h_cur, w_cur]) / 5 return noise def sinc(x): return torch.where( x != 0, torch.sin(math.pi * x) / (math.pi * x), x.new_ones([]) ) def lanczos(x, a): cond = torch.logical_and(-a < x, x < a) out = torch.where(cond, sinc(x) * sinc(x / a), x.new_zeros([])) return out / out.sum() def ramp(ratio, width): n = math.ceil(width / ratio + 1) out = torch.empty([n]) cur = 0 for i in range(out.shape[0]): out[i] = cur cur += ratio return torch.cat([-out[1:].flip([0]), out])[1:-1] def resample(input, size, align_corners=True): n, c, h, w = input.shape dh, dw = size input = input.view([n * c, 1, h, w]) if dh < h: kernel_h = lanczos(ramp(dh / h, 2), 2).to(input.device, input.dtype) pad_h = (kernel_h.shape[0] - 1) // 2 input = F.pad(input, (0, 0, pad_h, pad_h), "reflect") input = F.conv2d(input, kernel_h[None, None, :, None]) if dw < w: kernel_w = lanczos(ramp(dw / w, 2), 2).to(input.device, input.dtype) pad_w = (kernel_w.shape[0] - 1) // 2 input = F.pad(input, (pad_w, pad_w, 0, 0), "reflect") input = F.conv2d(input, kernel_w[None, None, None, :]) input = input.view([n, c, h, w]) return F.interpolate(input, size, mode="bicubic", align_corners=align_corners) def lerp(a, b, f): return (a * (1.0 - f)) + (b * f) class ReplaceGrad(torch.autograd.Function): @staticmethod def forward(ctx, x_forward, x_backward): ctx.shape = x_backward.shape return x_forward @staticmethod def backward(ctx, grad_in): return None, grad_in.sum_to_size(ctx.shape) replace_grad = ReplaceGrad.apply class ClampWithGrad(torch.autograd.Function): @staticmethod def forward(ctx, input, min, max): ctx.min = min ctx.max = max ctx.save_for_backward(input) return input.clamp(min, max) @staticmethod def backward(ctx, grad_in): (input,) = ctx.saved_tensors return ( grad_in * (grad_in * (input - input.clamp(ctx.min, ctx.max)) >= 0), None, None, ) clamp_with_grad = ClampWithGrad.apply def vector_quantize(x, codebook): d = ( x.pow(2).sum(dim=-1, keepdim=True) + codebook.pow(2).sum(dim=1) - 2 * x @ codebook.T ) indices = d.argmin(-1) x_q = F.one_hot(indices, codebook.shape[0]).to(d.dtype) @ codebook return replace_grad(x_q, x) class Prompt(nn.Module): def __init__(self, embed, weight=1.0, stop=float("-inf")): super().__init__() self.register_buffer("embed", embed) self.register_buffer("weight", torch.as_tensor(weight)) self.register_buffer("stop", torch.as_tensor(stop)) def forward(self, input): input_normed = F.normalize(input.unsqueeze(1), dim=2) embed_normed = F.normalize(self.embed.unsqueeze(0), dim=2) dists = ( input_normed.sub(embed_normed).norm(dim=2).div(2).arcsin().pow(2).mul(2) ) dists = dists * self.weight.sign() return ( self.weight.abs() * replace_grad(dists, torch.maximum(dists, self.stop)).mean() ) def parse_prompt(prompt): if prompt.startswith("http://") or prompt.startswith("https://"): vals = prompt.rsplit(":", 1) vals = [vals[0] + ":" + vals[1], *vals[2:]] else: vals = prompt.rsplit(":", 1) vals = vals + ["", "1", "-inf"][len(vals) :] return vals[0], float(vals[1]), float(vals[2]) def one_sided_clip_loss(input, target, labels=None, logit_scale=100): input_normed = F.normalize(input, dim=-1) target_normed = F.normalize(target, dim=-1) logits = input_normed @ target_normed.T * logit_scale if labels is None: labels = torch.arange(len(input), device=logits.device) return F.cross_entropy(logits, labels) class EMATensor(nn.Module): """implmeneted by Katherine Crowson""" def __init__(self, tensor, decay): super().__init__() self.tensor = nn.Parameter(tensor) self.register_buffer("biased", torch.zeros_like(tensor)) self.register_buffer("average", torch.zeros_like(tensor)) self.decay = decay self.register_buffer("accum", torch.tensor(1.0)) self.update() @torch.no_grad() def update(self): if not self.training: raise RuntimeError("update() should only be called during training") self.accum *= self.decay self.biased.mul_(self.decay) self.biased.add_((1 - self.decay) * self.tensor) self.average.copy_(self.biased) self.average.div_(1 - self.accum) def forward(self): if self.training: return self.tensor return self.average class MakeCutoutsCustom(nn.Module): def __init__(self, cut_size, cutn, cut_pow, augs): super().__init__() self.cut_size = cut_size # tqdm.write(f"cut size: {self.cut_size}") self.cutn = cutn self.cut_pow = cut_pow self.noise_fac = 0.1 self.av_pool = nn.AdaptiveAvgPool2d((self.cut_size, self.cut_size)) self.max_pool = nn.AdaptiveMaxPool2d((self.cut_size, self.cut_size)) self.augs = nn.Sequential( K.RandomHorizontalFlip(p=Random_Horizontal_Flip), K.RandomSharpness(Random_Sharpness, p=Random_Sharpness_P), K.RandomGaussianBlur( (Random_Gaussian_Blur), (Random_Gaussian_Blur_W, Random_Gaussian_Blur_W), p=Random_Gaussian_Blur_P, ), K.RandomGaussianNoise(p=Random_Gaussian_Noise_P), K.RandomElasticTransform( kernel_size=( Random_Elastic_Transform_Kernel_Size_W, Random_Elastic_Transform_Kernel_Size_H, ), sigma=(Random_Elastic_Transform_Sigma), p=Random_Elastic_Transform_P, ), K.RandomAffine( degrees=Random_Affine_Degrees, translate=Random_Affine_Translate, p=Random_Affine_P, padding_mode="border", ), K.RandomPerspective(Random_Perspective, p=Random_Perspective_P), K.ColorJitter( hue=Color_Jitter_Hue, saturation=Color_Jitter_Saturation, p=Color_Jitter_P, ), ) # K.RandomErasing((0.1, 0.7), (0.3, 1/0.4), same_on_batch=True, p=0.2),) def set_cut_pow(self, cut_pow): self.cut_pow = cut_pow def forward(self, input): sideY, sideX = input.shape[2:4] max_size = min(sideX, sideY) min_size = min(sideX, sideY, self.cut_size) cutouts = [] cutouts_full = [] noise_fac = 0.1 min_size_width = min(sideX, sideY) lower_bound = float(self.cut_size / min_size_width) for ii in range(self.cutn): # size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size) randsize = ( torch.zeros( 1, ) .normal_(mean=0.8, std=0.3) .clip(lower_bound, 1.0) ) size_mult = randsize**self.cut_pow size = int( min_size_width * (size_mult.clip(lower_bound, 1.0)) ) # replace .5 with a result for 224 the default large size is .95 # size = int(min_size_width*torch.zeros(1,).normal_(mean=.9, std=.3).clip(lower_bound, .95)) # replace .5 with a result for 224 the default large size is .95 offsetx = torch.randint(0, sideX - size + 1, ()) offsety = torch.randint(0, sideY - size + 1, ()) cutout = input[:, :, offsety : offsety + size, offsetx : offsetx + size] cutouts.append(resample(cutout, (self.cut_size, self.cut_size))) cutouts = torch.cat(cutouts, dim=0) cutouts = clamp_with_grad(cutouts, 0, 1) # if args.use_augs: cutouts = self.augs(cutouts) if self.noise_fac: facs = cutouts.new_empty([cutouts.shape[0], 1, 1, 1]).uniform_( 0, self.noise_fac ) cutouts = cutouts + facs * torch.randn_like(cutouts) return cutouts class MakeCutoutsJuu(nn.Module): def __init__(self, cut_size, cutn, cut_pow, augs): super().__init__() self.cut_size = cut_size self.cutn = cutn self.cut_pow = cut_pow self.augs = nn.Sequential( # K.RandomGaussianNoise(mean=0.0, std=0.5, p=0.1), K.RandomHorizontalFlip(p=0.5), K.RandomSharpness(0.3, p=0.4), K.RandomAffine(degrees=30, translate=0.1, p=0.8, padding_mode="border"), K.RandomPerspective(0.2, p=0.4), K.ColorJitter(hue=0.01, saturation=0.01, p=0.7), K.RandomGrayscale(p=0.1), ) self.noise_fac = 0.1 def forward(self, input): sideY, sideX = input.shape[2:4] max_size = min(sideX, sideY) min_size = min(sideX, sideY, self.cut_size) cutouts = [] for _ in range(self.cutn): size = int( torch.rand([]) ** self.cut_pow * (max_size - min_size) + min_size ) offsetx = torch.randint(0, sideX - size + 1, ()) offsety = torch.randint(0, sideY - size + 1, ()) cutout = input[:, :, offsety : offsety + size, offsetx : offsetx + size] cutouts.append(resample(cutout, (self.cut_size, self.cut_size))) batch = self.augs(torch.cat(cutouts, dim=0)) if self.noise_fac: facs = batch.new_empty([self.cutn, 1, 1, 1]).uniform_(0, self.noise_fac) batch = batch + facs * torch.randn_like(batch) return batch class MakeCutoutsMoth(nn.Module): def __init__(self, cut_size, cutn, cut_pow, augs, skip_augs=False): super().__init__() self.cut_size = cut_size self.cutn = cutn self.cut_pow = cut_pow self.skip_augs = skip_augs self.augs = T.Compose( [ T.RandomHorizontalFlip(p=0.5), T.Lambda(lambda x: x + torch.randn_like(x) * 0.01), T.RandomAffine(degrees=15, translate=(0.1, 0.1)), T.Lambda(lambda x: x + torch.randn_like(x) * 0.01), T.RandomPerspective(distortion_scale=0.4, p=0.7), T.Lambda(lambda x: x + torch.randn_like(x) * 0.01), T.RandomGrayscale(p=0.15), T.Lambda(lambda x: x + torch.randn_like(x) * 0.01), # T.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1), ] ) def forward(self, input): input = T.Pad(input.shape[2] // 4, fill=0)(input) sideY, sideX = input.shape[2:4] max_size = min(sideX, sideY) cutouts = [] for ch in range(cutn): if ch > cutn - cutn // 4: cutout = input.clone() else: size = int( max_size * torch.zeros( 1, ) .normal_(mean=0.8, std=0.3) .clip(float(self.cut_size / max_size), 1.0) ) offsetx = torch.randint(0, abs(sideX - size + 1), ()) offsety = torch.randint(0, abs(sideY - size + 1), ()) cutout = input[ :, :, offsety : offsety + size, offsetx : offsetx + size ] if not self.skip_augs: cutout = self.augs(cutout) cutouts.append(resample(cutout, (self.cut_size, self.cut_size))) del cutout cutouts = torch.cat(cutouts, dim=0) return cutouts class MakeCutoutsAaron(nn.Module): def __init__(self, cut_size, cutn, cut_pow, augs): super().__init__() self.cut_size = cut_size self.cutn = cutn self.cut_pow = cut_pow self.augs = augs self.av_pool = nn.AdaptiveAvgPool2d((self.cut_size, self.cut_size)) self.max_pool = nn.AdaptiveMaxPool2d((self.cut_size, self.cut_size)) def set_cut_pow(self, cut_pow): self.cut_pow = cut_pow def forward(self, input): sideY, sideX = input.shape[2:4] max_size = min(sideX, sideY) min_size = min(sideX, sideY, self.cut_size) cutouts = [] cutouts_full = [] min_size_width = min(sideX, sideY) lower_bound = float(self.cut_size / min_size_width) for ii in range(self.cutn): size = int( min_size_width * torch.zeros( 1, ) .normal_(mean=0.8, std=0.3) .clip(lower_bound, 1.0) ) # replace .5 with a result for 224 the default large size is .95 offsetx = torch.randint(0, sideX - size + 1, ()) offsety = torch.randint(0, sideY - size + 1, ()) cutout = input[:, :, offsety : offsety + size, offsetx : offsetx + size] cutouts.append(resample(cutout, (self.cut_size, self.cut_size))) cutouts = torch.cat(cutouts, dim=0) return clamp_with_grad(cutouts, 0, 1) class MakeCutoutsCumin(nn.Module): # from https://colab.research.google.com/drive/1ZAus_gn2RhTZWzOWUpPERNC0Q8OhZRTZ def __init__(self, cut_size, cutn, cut_pow, augs): super().__init__() self.cut_size = cut_size # tqdm.write(f"cut size: {self.cut_size}") self.cutn = cutn self.cut_pow = cut_pow self.noise_fac = 0.1 self.av_pool = nn.AdaptiveAvgPool2d((self.cut_size, self.cut_size)) self.max_pool = nn.AdaptiveMaxPool2d((self.cut_size, self.cut_size)) self.augs = nn.Sequential( # K.RandomHorizontalFlip(p=0.5), # K.RandomSharpness(0.3,p=0.4), # K.RandomGaussianBlur((3,3),(10.5,10.5),p=0.2), # K.RandomGaussianNoise(p=0.5), # K.RandomElasticTransform(kernel_size=(33, 33), sigma=(7,7), p=0.2), K.RandomAffine(degrees=15, translate=0.1, p=0.7, padding_mode="border"), K.RandomPerspective(0.7, p=0.7), K.ColorJitter(hue=0.1, saturation=0.1, p=0.7), K.RandomErasing((0.1, 0.4), (0.3, 1 / 0.3), same_on_batch=True, p=0.7), ) def set_cut_pow(self, cut_pow): self.cut_pow = cut_pow def forward(self, input): sideY, sideX = input.shape[2:4] max_size = min(sideX, sideY) min_size = min(sideX, sideY, self.cut_size) cutouts = [] cutouts_full = [] noise_fac = 0.1 min_size_width = min(sideX, sideY) lower_bound = float(self.cut_size / min_size_width) for ii in range(self.cutn): # size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size) randsize = ( torch.zeros( 1, ) .normal_(mean=0.8, std=0.3) .clip(lower_bound, 1.0) ) size_mult = randsize**self.cut_pow size = int( min_size_width * (size_mult.clip(lower_bound, 1.0)) ) # replace .5 with a result for 224 the default large size is .95 # size = int(min_size_width*torch.zeros(1,).normal_(mean=.9, std=.3).clip(lower_bound, .95)) # replace .5 with a result for 224 the default large size is .95 offsetx = torch.randint(0, sideX - size + 1, ()) offsety = torch.randint(0, sideY - size + 1, ()) cutout = input[:, :, offsety : offsety + size, offsetx : offsetx + size] cutouts.append(resample(cutout, (self.cut_size, self.cut_size))) cutouts = torch.cat(cutouts, dim=0) cutouts = clamp_with_grad(cutouts, 0, 1) # if args.use_augs: cutouts = self.augs(cutouts) if self.noise_fac: facs = cutouts.new_empty([cutouts.shape[0], 1, 1, 1]).uniform_( 0, self.noise_fac ) cutouts = cutouts + facs * torch.randn_like(cutouts) return cutouts class MakeCutoutsHolywater(nn.Module): def __init__(self, cut_size, cutn, cut_pow, augs): super().__init__() self.cut_size = cut_size # tqdm.write(f"cut size: {self.cut_size}") self.cutn = cutn self.cut_pow = cut_pow self.noise_fac = 0.1 self.av_pool = nn.AdaptiveAvgPool2d((self.cut_size, self.cut_size)) self.max_pool = nn.AdaptiveMaxPool2d((self.cut_size, self.cut_size)) self.augs = nn.Sequential( # K.RandomGaussianNoise(mean=0.0, std=0.5, p=0.1), K.RandomHorizontalFlip(p=0.5), K.RandomSharpness(0.3, p=0.4), K.RandomAffine(degrees=30, translate=0.1, p=0.8, padding_mode="border"), K.RandomPerspective(0.2, p=0.4), K.ColorJitter(hue=0.01, saturation=0.01, p=0.7), K.RandomGrayscale(p=0.1), ) def set_cut_pow(self, cut_pow): self.cut_pow = cut_pow def forward(self, input): sideY, sideX = input.shape[2:4] max_size = min(sideX, sideY) min_size = min(sideX, sideY, self.cut_size) cutouts = [] cutouts_full = [] noise_fac = 0.1 min_size_width = min(sideX, sideY) lower_bound = float(self.cut_size / min_size_width) for ii in range(self.cutn): size = int( torch.rand([]) ** self.cut_pow * (max_size - min_size) + min_size ) randsize = ( torch.zeros( 1, ) .normal_(mean=0.8, std=0.3) .clip(lower_bound, 1.0) ) size_mult = randsize**self.cut_pow * ii + size size1 = int( (min_size_width) * (size_mult.clip(lower_bound, 1.0)) ) # replace .5 with a result for 224 the default large size is .95 size2 = int( (min_size_width) * torch.zeros( 1, ) .normal_(mean=0.9, std=0.3) .clip(lower_bound, 0.95) ) # replace .5 with a result for 224 the default large size is .95 offsetx = torch.randint(0, sideX - size1 + 1, ()) offsety = torch.randint(0, sideY - size2 + 1, ()) cutout = input[ :, :, offsety : offsety + size2 + ii, offsetx : offsetx + size1 + ii ] cutouts.append(resample(cutout, (self.cut_size, self.cut_size))) cutouts = torch.cat(cutouts, dim=0) cutouts = clamp_with_grad(cutouts, 0, 1) cutouts = self.augs(cutouts) facs = cutouts.new_empty([cutouts.shape[0], 1, 1, 1]).uniform_( 0, self.noise_fac ) cutouts = cutouts + facs * torch.randn_like(cutouts) return cutouts class MakeCutoutsOldHolywater(nn.Module): def __init__(self, cut_size, cutn, cut_pow, augs): super().__init__() self.cut_size = cut_size # tqdm.write(f"cut size: {self.cut_size}") self.cutn = cutn self.cut_pow = cut_pow self.noise_fac = 0.1 self.av_pool = nn.AdaptiveAvgPool2d((self.cut_size, self.cut_size)) self.max_pool = nn.AdaptiveMaxPool2d((self.cut_size, self.cut_size)) self.augs = nn.Sequential( # K.RandomHorizontalFlip(p=0.5), # K.RandomSharpness(0.3,p=0.4), # K.RandomGaussianBlur((3,3),(10.5,10.5),p=0.2), # K.RandomGaussianNoise(p=0.5), # K.RandomElasticTransform(kernel_size=(33, 33), sigma=(7,7), p=0.2), K.RandomAffine( degrees=180, translate=0.5, p=0.2, padding_mode="border" ), K.RandomPerspective(0.6, p=0.9), K.ColorJitter(hue=0.03, saturation=0.01, p=0.1), K.RandomErasing((0.1, 0.7), (0.3, 1 / 0.4), same_on_batch=True, p=0.2), ) def set_cut_pow(self, cut_pow): self.cut_pow = cut_pow def forward(self, input): sideY, sideX = input.shape[2:4] max_size = min(sideX, sideY) min_size = min(sideX, sideY, self.cut_size) cutouts = [] cutouts_full = [] noise_fac = 0.1 min_size_width = min(sideX, sideY) lower_bound = float(self.cut_size / min_size_width) for ii in range(self.cutn): # size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size) randsize = ( torch.zeros( 1, ) .normal_(mean=0.8, std=0.3) .clip(lower_bound, 1.0) ) size_mult = randsize**self.cut_pow size = int( min_size_width * (size_mult.clip(lower_bound, 1.0)) ) # replace .5 with a result for 224 the default large size is .95 # size = int(min_size_width*torch.zeros(1,).normal_(mean=.9, std=.3).clip(lower_bound, .95)) # replace .5 with a result for 224 the default large size is .95 offsetx = torch.randint(0, sideX - size + 1, ()) offsety = torch.randint(0, sideY - size + 1, ()) cutout = input[:, :, offsety : offsety + size, offsetx : offsetx + size] cutouts.append(resample(cutout, (self.cut_size, self.cut_size))) cutouts = torch.cat(cutouts, dim=0) cutouts = clamp_with_grad(cutouts, 0, 1) # if args.use_augs: cutouts = self.augs(cutouts) if self.noise_fac: facs = cutouts.new_empty([cutouts.shape[0], 1, 1, 1]).uniform_( 0, self.noise_fac ) cutouts = cutouts + facs * torch.randn_like(cutouts) return cutouts class MakeCutoutsGinger(nn.Module): def __init__(self, cut_size, cutn, cut_pow, augs): super().__init__() self.cut_size = cut_size # tqdm.write(f"cut size: {self.cut_size}") self.cutn = cutn self.cut_pow = cut_pow self.noise_fac = 0.1 self.av_pool = nn.AdaptiveAvgPool2d((self.cut_size, self.cut_size)) self.max_pool = nn.AdaptiveMaxPool2d((self.cut_size, self.cut_size)) self.augs = augs """ nn.Sequential( K.RandomHorizontalFlip(p=0.5), K.RandomSharpness(0.3,p=0.4), K.RandomGaussianBlur((3,3),(10.5,10.5),p=0.2), K.RandomGaussianNoise(p=0.5), K.RandomElasticTransform(kernel_size=(33, 33), sigma=(7,7), p=0.2), K.RandomAffine(degrees=30, translate=0.1, p=0.8, padding_mode='border'), # padding_mode=2 K.RandomPerspective(0.2,p=0.4, ), K.ColorJitter(hue=0.01, saturation=0.01, p=0.7),) """ def set_cut_pow(self, cut_pow): self.cut_pow = cut_pow def forward(self, input): sideY, sideX = input.shape[2:4] max_size = min(sideX, sideY) min_size = min(sideX, sideY, self.cut_size) cutouts = [] cutouts_full = [] noise_fac = 0.1 min_size_width = min(sideX, sideY) lower_bound = float(self.cut_size / min_size_width) for ii in range(self.cutn): # size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size) randsize = ( torch.zeros( 1, ) .normal_(mean=0.8, std=0.3) .clip(lower_bound, 1.0) ) size_mult = randsize**self.cut_pow size = int( min_size_width * (size_mult.clip(lower_bound, 1.0)) ) # replace .5 with a result for 224 the default large size is .95 # size = int(min_size_width*torch.zeros(1,).normal_(mean=.9, std=.3).clip(lower_bound, .95)) # replace .5 with a result for 224 the default large size is .95 offsetx = torch.randint(0, sideX - size + 1, ()) offsety = torch.randint(0, sideY - size + 1, ()) cutout = input[:, :, offsety : offsety + size, offsetx : offsetx + size] cutouts.append(resample(cutout, (self.cut_size, self.cut_size))) cutouts = torch.cat(cutouts, dim=0) cutouts = clamp_with_grad(cutouts, 0, 1) # if args.use_augs: cutouts = self.augs(cutouts) if self.noise_fac: facs = cutouts.new_empty([cutouts.shape[0], 1, 1, 1]).uniform_( 0, self.noise_fac ) cutouts = cutouts + facs * torch.randn_like(cutouts) return cutouts class MakeCutoutsZynth(nn.Module): def __init__(self, cut_size, cutn, cut_pow, augs): super().__init__() self.cut_size = cut_size # tqdm.write(f"cut size: {self.cut_size}") self.cutn = cutn self.cut_pow = cut_pow self.noise_fac = 0.1 self.av_pool = nn.AdaptiveAvgPool2d((self.cut_size, self.cut_size)) self.max_pool = nn.AdaptiveMaxPool2d((self.cut_size, self.cut_size)) self.augs = nn.Sequential( K.RandomHorizontalFlip(p=0.5), # K.RandomSolarize(0.01, 0.01, p=0.7), K.RandomSharpness(0.3, p=0.4), K.RandomAffine(degrees=30, translate=0.1, p=0.8, padding_mode="border"), K.RandomPerspective(0.2, p=0.4), K.ColorJitter(hue=0.01, saturation=0.01, p=0.7), ) def set_cut_pow(self, cut_pow): self.cut_pow = cut_pow def forward(self, input): sideY, sideX = input.shape[2:4] max_size = min(sideX, sideY) min_size = min(sideX, sideY, self.cut_size) cutouts = [] cutouts_full = [] noise_fac = 0.1 min_size_width = min(sideX, sideY) lower_bound = float(self.cut_size / min_size_width) for ii in range(self.cutn): # size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size) randsize = ( torch.zeros( 1, ) .normal_(mean=0.8, std=0.3) .clip(lower_bound, 1.0) ) size_mult = randsize**self.cut_pow size = int( min_size_width * (size_mult.clip(lower_bound, 1.0)) ) # replace .5 with a result for 224 the default large size is .95 # size = int(min_size_width*torch.zeros(1,).normal_(mean=.9, std=.3).clip(lower_bound, .95)) # replace .5 with a result for 224 the default large size is .95 offsetx = torch.randint(0, sideX - size + 1, ()) offsety = torch.randint(0, sideY - size + 1, ()) cutout = input[:, :, offsety : offsety + size, offsetx : offsetx + size] cutouts.append(resample(cutout, (self.cut_size, self.cut_size))) cutouts = torch.cat(cutouts, dim=0) cutouts = clamp_with_grad(cutouts, 0, 1) # if args.use_augs: cutouts = self.augs(cutouts) if self.noise_fac: facs = cutouts.new_empty([cutouts.shape[0], 1, 1, 1]).uniform_( 0, self.noise_fac ) cutouts = cutouts + facs * torch.randn_like(cutouts) return cutouts class MakeCutoutsWyvern(nn.Module): def __init__(self, cut_size, cutn, cut_pow, augs): super().__init__() self.cut_size = cut_size # tqdm.write(f"cut size: {self.cut_size}") self.cutn = cutn self.cut_pow = cut_pow self.noise_fac = 0.1 self.av_pool = nn.AdaptiveAvgPool2d((self.cut_size, self.cut_size)) self.max_pool = nn.AdaptiveMaxPool2d((self.cut_size, self.cut_size)) self.augs = augs def forward(self, input): sideY, sideX = input.shape[2:4] max_size = min(sideX, sideY) min_size = min(sideX, sideY, self.cut_size) cutouts = [] for _ in range(self.cutn): size = int( torch.rand([]) ** self.cut_pow * (max_size - min_size) + min_size ) offsetx = torch.randint(0, sideX - size + 1, ()) offsety = torch.randint(0, sideY - size + 1, ()) cutout = input[:, :, offsety : offsety + size, offsetx : offsetx + size] cutouts.append(resample(cutout, (self.cut_size, self.cut_size))) return clamp_with_grad(torch.cat(cutouts, dim=0), 0, 1) import PIL def resize_image(image, out_size): ratio = image.size[0] / image.size[1] area = min(image.size[0] * image.size[1], out_size[0] * out_size[1]) size = round((area * ratio) ** 0.5), round((area / ratio) ** 0.5) return image.resize(size, PIL.Image.LANCZOS) class GaussianBlur2d(nn.Module): def __init__(self, sigma, window=0, mode="reflect", value=0): super().__init__() self.mode = mode self.value = value if not window: window = max(math.ceil((sigma * 6 + 1) / 2) * 2 - 1, 3) if sigma: kernel = torch.exp( -((torch.arange(window) - window // 2) ** 2) / 2 / sigma**2 ) kernel /= kernel.sum() else: kernel = torch.ones([1]) self.register_buffer("kernel", kernel) def forward(self, input): n, c, h, w = input.shape input = input.view([n * c, 1, h, w]) start_pad = (self.kernel.shape[0] - 1) // 2 end_pad = self.kernel.shape[0] // 2 input = F.pad( input, (start_pad, end_pad, start_pad, end_pad), self.mode, self.value ) input = F.conv2d(input, self.kernel[None, None, None, :]) input = F.conv2d(input, self.kernel[None, None, :, None]) return input.view([n, c, h, w]) BUF_SIZE = 65536 def get_digest(path, alg=hashlib.sha256): hash = alg() # print(path) with open(path, "rb") as fp: while True: data = fp.read(BUF_SIZE) if not data: break hash.update(data) return b64encode(hash.digest()).decode("utf-8") flavordict = { "cumin": MakeCutoutsCumin, "holywater": MakeCutoutsHolywater, "old_holywater": MakeCutoutsOldHolywater, "ginger": MakeCutoutsGinger, "zynth": MakeCutoutsZynth, "wyvern": MakeCutoutsWyvern, "aaron": MakeCutoutsAaron, "moth": MakeCutoutsMoth, "juu": MakeCutoutsJuu, "custom": MakeCutoutsCustom, } @torch.jit.script def gelu_impl(x): """OpenAI's gelu implementation.""" return ( 0.5 * x * (1.0 + torch.tanh(0.7978845608028654 * x * (1.0 + 0.044715 * x * x))) ) def gelu(x): return gelu_impl(x) class MSEDecayLoss(nn.Module): def __init__(self, init_weight, mse_decay_rate, mse_epoches, mse_quantize): super().__init__() self.init_weight = init_weight self.has_init_image = False self.mse_decay = init_weight / mse_epoches if init_weight else 0 self.mse_decay_rate = mse_decay_rate self.mse_weight = init_weight self.mse_epoches = mse_epoches self.mse_quantize = mse_quantize @torch.no_grad() def set_target(self, z_tensor, model): z_tensor = z_tensor.detach().clone() if self.mse_quantize: z_tensor = vector_quantize( z_tensor.movedim(1, 3), model.quantize.embedding.weight ).movedim( 3, 1 ) # z.average self.z_orig = z_tensor def forward(self, i, z): if self.is_active(i): return F.mse_loss(z, self.z_orig) * self.mse_weight / 2 return 0 def is_active(self, i): if not self.init_weight: return False if i <= self.mse_decay_rate and not self.has_init_image: return False return True @torch.no_grad() def step(self, i): if ( i % self.mse_decay_rate == 0 and i != 0 and i < self.mse_decay_rate * self.mse_epoches ): if ( self.mse_weight - self.mse_decay > 0 and self.mse_weight - self.mse_decay >= self.mse_decay ): self.mse_weight -= self.mse_decay else: self.mse_weight = 0 # print(f"updated mse weight: {self.mse_weight}") return True return False class TVLoss(nn.Module): def forward(self, input): input = F.pad(input, (0, 1, 0, 1), "replicate") x_diff = input[..., :-1, 1:] - input[..., :-1, :-1] y_diff = input[..., 1:, :-1] - input[..., :-1, :-1] diff = x_diff**2 + y_diff**2 + 1e-8 return diff.mean(dim=1).sqrt().mean() class MultiClipLoss(nn.Module): def __init__( self, clip_models, text_prompt, cutn, cut_pow=1.0, clip_weight=1.0 ): super().__init__() # Load Clip self.perceptors = [] for cm in clip_models: sys.stdout.write(f"Loading {cm[0]} ...\n") sys.stdout.flush() c = ( clip.load(cm[0], jit=False)[0] .eval() .requires_grad_(False) .to(device) ) self.perceptors.append( { "res": c.visual.input_resolution, "perceptor": c, "weight": cm[1], "prompts": [], } ) self.perceptors.sort(key=lambda e: e["res"], reverse=True) # Make Cutouts self.max_cut_size = self.perceptors[0]["res"] # self.make_cuts = flavordict[flavor](self.max_cut_size, cutn, cut_pow) # cutouts = flavordict[flavor](self.max_cut_size, cutn, cut_pow=cut_pow, augs=args.augs) # Get Prompt Embedings # texts = [phrase.strip() for phrase in text_prompt.split("|")] # if text_prompt == ['']: # texts = [] texts = text_prompt self.pMs = [] for prompt in texts: txt, weight, stop = parse_prompt(prompt) clip_token = clip.tokenize(txt).to(device) for p in self.perceptors: embed = p["perceptor"].encode_text(clip_token).float() embed_normed = F.normalize(embed.unsqueeze(0), dim=2) p["prompts"].append( { "embed_normed": embed_normed, "weight": torch.as_tensor(weight, device=device), "stop": torch.as_tensor(stop, device=device), } ) # Prep Augments self.normalize = transforms.Normalize( mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711], ) self.augs = nn.Sequential( K.RandomHorizontalFlip(p=0.5), K.RandomSharpness(0.3, p=0.1), K.RandomAffine( degrees=30, translate=0.1, p=0.8, padding_mode="border" ), # padding_mode=2 K.RandomPerspective( 0.2, p=0.4, ), K.ColorJitter(hue=0.01, saturation=0.01, p=0.7), K.RandomGrayscale(p=0.15), ) self.noise_fac = 0.1 self.clip_weight = clip_weight def prepare_cuts(self, img): cutouts = self.make_cuts(img) cutouts = self.augs(cutouts) if self.noise_fac: facs = cutouts.new_empty([cutouts.shape[0], 1, 1, 1]).uniform_( 0, self.noise_fac ) cutouts = cutouts + facs * torch.randn_like(cutouts) cutouts = self.normalize(cutouts) return cutouts def forward(self, i, img): cutouts = checkpoint(self.prepare_cuts, img) loss = [] current_cuts = cutouts currentres = self.max_cut_size for p in self.perceptors: if currentres != p["res"]: current_cuts = resample(cutouts, (p["res"], p["res"])) currentres = p["res"] iii = p["perceptor"].encode_image(current_cuts).float() input_normed = F.normalize(iii.unsqueeze(1), dim=2) for prompt in p["prompts"]: dists = ( input_normed.sub(prompt["embed_normed"]) .norm(dim=2) .div(2) .arcsin() .pow(2) .mul(2) ) dists = dists * prompt["weight"].sign() l = ( prompt["weight"].abs() * replace_grad( dists, torch.maximum(dists, prompt["stop"]) ).mean() ) loss.append(l * p["weight"]) return loss class ModelHost: def __init__(self, args): self.args = args self.model, self.perceptor = None, None self.make_cutouts = None self.alt_make_cutouts = None self.imageSize = None self.prompts = None self.opt = None self.normalize = None self.z, self.z_orig, self.z_min, self.z_max = None, None, None, None self.metadata = None self.mse_weight = 0 self.normal_flip_optim = None self.usealtprompts = False def setup_metadata(self, seed): metadata = {k: v for k, v in vars(self.args).items()} del metadata["max_iterations"] del metadata["display_freq"] metadata["seed"] = seed if metadata["init_image"]: path = metadata["init_image"] digest = get_digest(path) metadata["init_image"] = (path, digest) if metadata["image_prompts"]: prompts = [] for prompt in metadata["image_prompts"]: path = prompt digest = get_digest(path) prompts.append((path, digest)) metadata["image_prompts"] = prompts self.metadata = metadata def setup_model(self, x): i = x device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") #perceptor = ( # clip.load(args.clip_model, jit=False)[0] # .eval() # .requires_grad_(False) # .to(device) #) cut_size = perceptor.visual.input_resolution if self.args.is_gumbel: e_dim = model.quantize.embedding_dim else: e_dim = model.quantize.e_dim f = 2 ** (model.decoder.num_resolutions - 1) make_cutouts = flavordict[flavor]( cut_size, args.mse_cutn, cut_pow=args.mse_cut_pow, augs=args.augs ) # make_cutouts = MakeCutouts(cut_size, args.mse_cutn, cut_pow=args.mse_cut_pow,augs=args.augs) if args.altprompts: self.usealtprompts = True self.alt_make_cutouts = flavordict[flavor]( cut_size, args.mse_cutn, cut_pow=args.alt_mse_cut_pow, augs=args.altaugs, ) # self.alt_make_cutouts = MakeCutouts(cut_size, args.mse_cutn, cut_pow=args.alt_mse_cut_pow,augs=args.altaugs) if self.args.is_gumbel: n_toks = model.quantize.n_embed else: n_toks = model.quantize.n_e toksX, toksY = args.size[0] // f, args.size[1] // f sideX, sideY = toksX * f, toksY * f if self.args.is_gumbel: z_min = model.quantize.embed.weight.min(dim=0).values[ None, :, None, None ] z_max = model.quantize.embed.weight.max(dim=0).values[ None, :, None, None ] else: z_min = model.quantize.embedding.weight.min(dim=0).values[ None, :, None, None ] z_max = model.quantize.embedding.weight.max(dim=0).values[ None, :, None, None ] from PIL import Image import cv2 # ------- working_dir = self.args.folder_name if self.args.init_image != "": img_0 = cv2.imread(init_image) z, *_ = model.encode( TF.to_tensor(img_0).to(device).unsqueeze(0) * 2 - 1 ) elif not os.path.isfile(f"{working_dir}/steps/{i:04d}.png"): one_hot = F.one_hot( torch.randint(n_toks, [toksY * toksX], device=device), n_toks ).float() if self.args.is_gumbel: z = one_hot @ model.quantize.embed.weight else: z = one_hot @ model.quantize.embedding.weight z = z.view([-1, toksY, toksX, e_dim]).permute(0, 3, 1, 2) else: center = (1 * img_0.shape[1] // 2, 1 * img_0.shape[0] // 2) trans_mat = np.float32([[1, 0, 10], [0, 1, 10]]) rot_mat = cv2.getRotationMatrix2D(center, 10, 20) trans_mat = np.vstack([trans_mat, [0, 0, 1]]) rot_mat = np.vstack([rot_mat, [0, 0, 1]]) transformation_matrix = np.matmul(rot_mat, trans_mat) img_0 = cv2.warpPerspective( img_0, transformation_matrix, (img_0.shape[1], img_0.shape[0]), borderMode=cv2.BORDER_WRAP, ) z, *_ = model.encode( TF.to_tensor(img_0).to(device).unsqueeze(0) * 2 - 1 ) def save_output(i, img, suffix="zoomed"): filename = f"{working_dir}/steps/{i:04}{'_' + suffix if suffix else ''}.png" imageio.imwrite(filename, np.array(img)) save_output(i, img_0) # ------- if args.init_image: pil_image = Image.open(args.init_image).convert("RGB") pil_image = pil_image.resize((sideX, sideY), Image.LANCZOS) z, *_ = model.encode( TF.to_tensor(pil_image).to(device).unsqueeze(0) * 2 - 1 ) else: one_hot = F.one_hot( torch.randint(n_toks, [toksY * toksX], device=device), n_toks ).float() if self.args.is_gumbel: z = one_hot @ model.quantize.embed.weight else: z = one_hot @ model.quantize.embedding.weight z = z.view([-1, toksY, toksX, e_dim]).permute(0, 3, 1, 2) z = EMATensor(z, args.ema_val) if args.mse_with_zeros and not args.init_image: z_orig = torch.zeros_like(z.tensor) else: z_orig = z.tensor.clone() z.requires_grad_(True) # opt = optim.AdamW(z.parameters(), lr=args.mse_step_size, weight_decay=0.00000000) print("Step size inside:", args.step_size) if self.normal_flip_optim == True: if randint(1, 2) == 1: opt = torch.optim.AdamW( z.parameters(), lr=args.step_size, weight_decay=0.00000000 ) # opt = Ranger21(z.parameters(), lr=args.step_size, weight_decay=0.00000000) else: opt = optim.DiffGrad( z.parameters(), lr=args.step_size, weight_decay=0.00000000 ) else: opt = torch.optim.AdamW( z.parameters(), lr=args.step_size, weight_decay=0.00000000 ) self.cur_step_size = args.mse_step_size normalize = transforms.Normalize( mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711], ) pMs = [] altpMs = [] for prompt in args.prompts: txt, weight, stop = parse_prompt(prompt) embed = perceptor.encode_text(clip.tokenize(txt).to(device)).float() pMs.append(Prompt(embed, weight, stop).to(device)) for prompt in args.altprompts: txt, weight, stop = parse_prompt(prompt) embed = perceptor.encode_text(clip.tokenize(txt).to(device)).float() altpMs.append(Prompt(embed, weight, stop).to(device)) from PIL import Image for prompt in args.image_prompts: path, weight, stop = parse_prompt(prompt) img = resize_image(Image.open(path).convert("RGB"), (sideX, sideY)) batch = make_cutouts(TF.to_tensor(img).unsqueeze(0).to(device)) embed = perceptor.encode_image(normalize(batch)).float() pMs.append(Prompt(embed, weight, stop).to(device)) for seed, weight in zip(args.noise_prompt_seeds, args.noise_prompt_weights): gen = torch.Generator().manual_seed(seed) embed = torch.empty([1, perceptor.visual.output_dim]).normal_( generator=gen ) pMs.append(Prompt(embed, weight).to(device)) if self.usealtprompts: altpMs.append(Prompt(embed, weight).to(device)) self.model, self.perceptor = model, perceptor self.make_cutouts = make_cutouts self.imageSize = (sideX, sideY) self.prompts = pMs self.altprompts = altpMs self.opt = opt self.normalize = normalize self.z, self.z_orig, self.z_min, self.z_max = z, z_orig, z_min, z_max self.setup_metadata(args2.seed) self.mse_weight = self.args.init_weight def synth(self, z): if self.args.is_gumbel: z_q = vector_quantize( z.movedim(1, 3), self.model.quantize.embed.weight ).movedim(3, 1) else: z_q = vector_quantize( z.movedim(1, 3), self.model.quantize.embedding.weight ).movedim(3, 1) return clamp_with_grad(self.model.decode(z_q).add(1).div(2), 0, 1) def add_metadata(self, path, i): imfile = PngImageFile(path) meta = PngInfo() step_meta = {"iterations": i} step_meta.update(self.metadata) # meta.add_itxt('vqgan-params', json.dumps(step_meta), zip=True) imfile.save(path, pnginfo=meta) # Hey you. This one's for Glooperpogger#7353 on Discord (Gloop has a gun), they are a nice snek @torch.no_grad() def checkin(self, i, losses, x): out = self.synth(self.z.average) batchpath = "./" TF.to_pil_image(out[0].cpu()).save(args2.image_file) def unique_index(self, batchpath): i = 0 while i < 10000: if os.path.isfile(batchpath + "/" + str(i) + ".png"): i = i + 1 else: return batchpath + "/" + str(i) + ".png" def ascend_txt(self, i): out = self.synth(self.z.tensor) iii = self.perceptor.encode_image( self.normalize(self.make_cutouts(out)) ).float() result = [] if self.args.init_weight and self.mse_weight > 0: result.append( F.mse_loss(self.z.tensor, self.z_orig) * self.mse_weight / 2 ) for prompt in self.prompts: result.append(prompt(iii)) if self.usealtprompts: iii = self.perceptor.encode_image( self.normalize(self.alt_make_cutouts(out)) ).float() for prompt in self.altprompts: result.append(prompt(iii)) return result def train(self, i, x): self.opt.zero_grad() mse_decay = self.args.mse_decay mse_decay_rate = self.args.mse_decay_rate lossAll = self.ascend_txt(i) sys.stdout.write("Iteration {}".format(i) + "\n") sys.stdout.flush() if i % (args2.iterations-2) == 0: self.checkin(i, lossAll, x) loss = sum(lossAll) loss.backward() self.opt.step() with torch.no_grad(): if ( self.mse_weight > 0 and self.args.init_weight and i > 0 and i % mse_decay_rate == 0 ): if self.args.is_gumbel: self.z_orig = vector_quantize( self.z.average.movedim(1, 3), self.model.quantize.embed.weight, ).movedim(3, 1) else: self.z_orig = vector_quantize( self.z.average.movedim(1, 3), self.model.quantize.embedding.weight, ).movedim(3, 1) if self.mse_weight - mse_decay > 0: self.mse_weight = self.mse_weight - mse_decay # print(f"updated mse weight: {self.mse_weight}") else: self.mse_weight = 0 self.make_cutouts = flavordict[flavor]( self.perceptor.visual.input_resolution, args.cutn, cut_pow=args.cut_pow, augs=args.augs, ) if self.usealtprompts: self.alt_make_cutouts = flavordict[flavor]( self.perceptor.visual.input_resolution, args.cutn, cut_pow=args.alt_cut_pow, augs=args.altaugs, ) self.z = EMATensor(self.z.average, args.ema_val) self.new_step_size = args.step_size self.opt = torch.optim.AdamW( self.z.parameters(), lr=args.step_size, weight_decay=0.00000000, ) # print(f"updated mse weight: {self.mse_weight}") if i > args.mse_end: if ( args.step_size != args.final_step_size and args.max_iterations > 0 ): progress = (i - args.mse_end) / (args.max_iterations) self.cur_step_size = lerp(step_size, final_step_size, progress) for g in self.opt.param_groups: g["lr"] = self.cur_step_size def run(self, x): j = 0 try: print("Step size: ", args.step_size) print("Step MSE size: ", args.mse_step_size) before_start_time = time.perf_counter() total_steps = int(args.max_iterations + args.mse_end) - 1 for _ in range(total_steps): self.train(j, x) if j > 0 and j % args.mse_decay_rate == 0 and self.mse_weight > 0: self.z = EMATensor(self.z.average, args.ema_val) self.opt = torch.optim.AdamW( self.z.parameters(), lr=args.mse_step_size, weight_decay=0.00000000, ) if j >= total_steps: break self.z.update() j += 1 time_past_seconds = time.perf_counter() - before_start_time iterations_per_second = j / time_past_seconds time_left = (total_steps - j) / iterations_per_second percentage = round((j / (total_steps + 1)) * 100) import shutil import os #image_data = Image.open(args2.image_file) #os.remove(args2.image_file) #return(image_data) except KeyboardInterrupt: pass def add_noise(img): # Getting the dimensions of the image row, col = img.shape # Randomly pick some pixels in the # image for coloring them white # Pick a random number between 300 and 10000 number_of_pixels = random.randint(300, 10000) for i in range(number_of_pixels): # Pick a random y coordinate y_coord = random.randint(0, row - 1) # Pick a random x coordinate x_coord = random.randint(0, col - 1) # Color that pixel to white img[y_coord][x_coord] = 255 # Randomly pick some pixels in # the image for coloring them black # Pick a random number between 300 and 10000 number_of_pixels = random.randint(300, 10000) for i in range(number_of_pixels): # Pick a random y coordinate y_coord = random.randint(0, row - 1) # Pick a random x coordinate x_coord = random.randint(0, col - 1) # Color that pixel to black img[y_coord][x_coord] = 0 return img import io import base64 def image_to_data_url(img, ext): img_byte_arr = io.BytesIO() img.save(img_byte_arr, format=ext) img_byte_arr = img_byte_arr.getvalue() # ext = filename.split('.')[-1] prefix = f"data:image/{ext};base64," return prefix + base64.b64encode(img_byte_arr).decode("utf-8") import torch import math device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def rand_perlin_2d( shape, res, fade=lambda t: 6 * t**5 - 15 * t**4 + 10 * t**3 ): delta = (res[0] / shape[0], res[1] / shape[1]) d = (shape[0] // res[0], shape[1] // res[1]) grid = ( torch.stack( torch.meshgrid( torch.arange(0, res[0], delta[0]), torch.arange(0, res[1], delta[1]) ), dim=-1, ) % 1 ) angles = 2 * math.pi * torch.rand(res[0] + 1, res[1] + 1) gradients = torch.stack((torch.cos(angles), torch.sin(angles)), dim=-1) tile_grads = ( lambda slice1, slice2: gradients[ slice1[0] : slice1[1], slice2[0] : slice2[1] ] .repeat_interleave(d[0], 0) .repeat_interleave(d[1], 1) ) dot = lambda grad, shift: ( torch.stack( ( grid[: shape[0], : shape[1], 0] + shift[0], grid[: shape[0], : shape[1], 1] + shift[1], ), dim=-1, ) * grad[: shape[0], : shape[1]] ).sum(dim=-1) n00 = dot(tile_grads([0, -1], [0, -1]), [0, 0]) n10 = dot(tile_grads([1, None], [0, -1]), [-1, 0]) n01 = dot(tile_grads([0, -1], [1, None]), [0, -1]) n11 = dot(tile_grads([1, None], [1, None]), [-1, -1]) t = fade(grid[: shape[0], : shape[1]]) return math.sqrt(2) * torch.lerp( torch.lerp(n00, n10, t[..., 0]), torch.lerp(n01, n11, t[..., 0]), t[..., 1] ) def rand_perlin_2d_octaves(desired_shape, octaves=1, persistence=0.5): shape = torch.tensor(desired_shape) shape = 2 ** torch.ceil(torch.log2(shape)) shape = shape.type(torch.int) max_octaves = int( min( octaves, math.log(shape[0]) / math.log(2), math.log(shape[1]) / math.log(2), ) ) res = torch.floor(shape / 2**max_octaves).type(torch.int) noise = torch.zeros(list(shape)) frequency = 1 amplitude = 1 for _ in range(max_octaves): noise += amplitude * rand_perlin_2d( shape, (frequency * res[0], frequency * res[1]) ) frequency *= 2 amplitude *= persistence return noise[: desired_shape[0], : desired_shape[1]] def rand_perlin_rgb(desired_shape, amp=0.1, octaves=6): r = rand_perlin_2d_octaves(desired_shape, octaves) g = rand_perlin_2d_octaves(desired_shape, octaves) b = rand_perlin_2d_octaves(desired_shape, octaves) rgb = (torch.stack((r, g, b)) * amp + 1) * 0.5 return rgb.unsqueeze(0).clip(0, 1).to(device) def pyramid_noise_gen(shape, octaves=5, decay=1.0): n, c, h, w = shape noise = torch.zeros([n, c, 1, 1]) max_octaves = int(min(math.log(h) / math.log(2), math.log(w) / math.log(2))) if octaves is not None and 0 < octaves: max_octaves = min(octaves, max_octaves) for i in reversed(range(max_octaves)): h_cur, w_cur = h // 2**i, w // 2**i noise = F.interpolate( noise, (h_cur, w_cur), mode="bicubic", align_corners=False ) noise += (torch.randn([n, c, h_cur, w_cur]) / max_octaves) * decay ** ( max_octaves - (i + 1) ) return noise def rand_z(model, toksX, toksY): e_dim = model.quantize.e_dim n_toks = model.quantize.n_e z_min = model.quantize.embedding.weight.min(dim=0).values[None, :, None, None] z_max = model.quantize.embedding.weight.max(dim=0).values[None, :, None, None] one_hot = F.one_hot( torch.randint(n_toks, [toksY * toksX], device=device), n_toks ).float() z = one_hot @ model.quantize.embedding.weight z = z.view([-1, toksY, toksX, e_dim]).permute(0, 3, 1, 2) return z def make_rand_init( mode, model, perlin_octaves, perlin_weight, pyramid_octaves, pyramid_decay, toksX, toksY, f, ): if mode == "VQGAN ZRand": return rand_z(model, toksX, toksY) elif mode == "Perlin Noise": rand_init = rand_perlin_rgb( (toksY * f, toksX * f), perlin_weight, perlin_octaves ) z, *_ = model.encode(rand_init * 2 - 1) return z elif mode == "Pyramid Noise": rand_init = pyramid_noise_gen( (1, 3, toksY * f, toksX * f), pyramid_octaves, pyramid_decay ).to(device) rand_init = (rand_init * 0.5 + 0.5).clip(0, 1) z, *_ = model.encode(rand_init * 2 - 1) return z ##################### JUICY MESS ################################### import os imagenet_1024 = False # @param {type:"boolean"} imagenet_16384 = True # @param {type:"boolean"} gumbel_8192 = False # @param {type:"boolean"} sber_gumbel = False # @param {type:"boolean"} # imagenet_cin = False #@param {type:"boolean"} coco = False # @param {type:"boolean"} coco_1stage = False # @param {type:"boolean"} faceshq = False # @param {type:"boolean"} wikiart_1024 = False # @param {type:"boolean"} wikiart_16384 = False # @param {type:"boolean"} wikiart_7mil = False # @param {type:"boolean"} sflckr = False # @param {type:"boolean"} ##@markdown Experimental models (won't probably work, if you know how to make them work, go ahead :D): # celebahq = False #@param {type:"boolean"} # ade20k = False #@param {type:"boolean"} # drin = False #@param {type:"boolean"} # gumbel = False #@param {type:"boolean"} # gumbel_8192 = False #@param {type:"boolean"} # Configure and run the model""" # Commented out IPython magic to ensure Python compatibility. # @title ← 🏃♂️ **Configure & Run** 🏃♂️ import os import random import cv2 # from google.colab import drive from PIL import Image from importlib import reload reload(PIL.TiffTags) # %cd /content/ # @markdown >`prompts` is the list of prompts to give to the AI, separated by `|`. With more than one, it will attempt to mix them together. You can add weights to different parts of the prompt by adding a `p:x` at the end of a prompt (before a `|`) where `p` is the prompt and `x` is the weight. # prompts = "A fantasy landscape, by Greg Rutkowski. A lush mountain.:1 | Trending on ArtStation, unreal engine. 4K HD, realism.:0.63" #@param {type:"string"} prompts = args2.prompt width = args2.sizex # @param {type:"number"} height = args2.sizey # @param {type:"number"} # model = "ImageNet 16384" #@param ['ImageNet 16384', 'ImageNet 1024', "Gumbel 8192", "Sber Gumbel", 'WikiArt 1024', 'WikiArt 16384', 'WikiArt 7mil', 'COCO-Stuff', 'COCO 1 Stage', 'FacesHQ', 'S-FLCKR'] #model = args2.vqgan_model #if model == "Gumbel 8192" or model == "Sber Gumbel": # is_gumbel = True #else: # is_gumbel = False is_gumbel = False ##@markdown The flavor effects the output greatly. Each has it's own characteristics and depending on what you choose, you'll get a widely different result with the same prompt and seed. Ginger is the default, nothing special. Cumin results more of a painting, while Holywater makes everythng super funky and/or colorful. Custom is a custom flavor, use the utilities above. # Type "old_holywater" to use the old holywater flavor from Hypertron V1 flavor = ( args2.flavor ) #'ginger' #@param ["ginger", "cumin", "holywater", "zynth", "wyvern", "aaron", "moth", "juu", "custom"] template = ( args2.template ) # @param ["none", "----------Parameter Tweaking----------", "Balanced", "Detailed", "Consistent Creativity", "Realistic", "Smooth", "Subtle MSE", "Hyper Fast Results", "----------Complete Overhaul----------", "flag", "planet", "creature", "human", "----------Sizes----------", "Size: Square", "Size: Landscape", "Size: Poster", "----------Prompt Modifiers----------", "Better - Fast", "Better - Slow", "Movie Poster", "Negative Prompt", "Better Quality"] ##@markdown To use initial or target images, upload it on the left in the file browser. You can also use previous outputs by putting its path below, e.g. `batch_01/0.png`. If your previous output is saved to drive, you can use the checkbox so you don't have to type the whole path. init = "default noise" # @param ["default noise", "image", "random image", "salt and pepper noise", "salt and pepper noise on init image"] if args2.seed_image is None: init_image = "" # args2.seed_image #""#@param {type:"string"} else: init_image = args2.seed_image # ""#@param {type:"string"} if init == "random image": url = ( "https://picsum.photos/" + str(width) + "/" + str(height) + "?blur=" + str(random.randrange(5, 10)) ) urllib.request.urlretrieve(url, "Init_Img/Image.png") init_image = "Init_Img/Image.png" elif init == "random image clear": url = "https://source.unsplash.com/random/" + str(width) + "x" + str(height) urllib.request.urlretrieve(url, "Init_Img/Image.png") init_image = "Init_Img/Image.png" elif init == "random image clear 2": url = "https://loremflickr.com/" + str(width) + "/" + str(height) urllib.request.urlretrieve(url, "Init_Img/Image.png") init_image = "Init_Img/Image.png" elif init == "salt and pepper noise": urllib.request.urlretrieve( "https://i.stack.imgur.com/olrL8.png", "Init_Img/Image.png" ) import cv2 img = cv2.imread("Init_Img/Image.png", 0) cv2.imwrite("Init_Img/Image.png", add_noise(img)) init_image = "Init_Img/Image.png" elif init == "salt and pepper noise on init image": img = cv2.imread(init_image, 0) cv2.imwrite("Init_Img/Image.png", add_noise(img)) init_image = "Init_Img/Image.png" elif init == "perlin noise": # For some reason Colab started crashing from this import noise import numpy as np from PIL import Image shape = (width, height) scale = 100 octaves = 6 persistence = 0.5 lacunarity = 2.0 seed = np.random.randint(0, 100000) world = np.zeros(shape) for i in range(shape[0]): for j in range(shape[1]): world[i][j] = noise.pnoise2( i / scale, j / scale, octaves=octaves, persistence=persistence, lacunarity=lacunarity, repeatx=1024, repeaty=1024, base=seed, ) Image.fromarray(prep_world(world)).convert("L").save("Init_Img/Image.png") init_image = "Init_Img/Image.png" elif init == "black and white": url = "https://www.random.org/bitmaps/?format=png&width=300&height=300&zoom=1" urllib.request.urlretrieve(url, "Init_Img/Image.png") init_image = "Init_Img/Image.png" seed = args2.seed # @param {type:"number"} # @markdown >iterations excludes iterations spent during the mse phase, if it is being used. The total iterations will be more if `mse_decay_rate` is more than 0. iterations = args2.iterations # @param {type:"number"} transparent_png = False # @param {type:"boolean"} # @markdown ⚠ **ADVANCED SETTINGS** ⚠ # @markdown --- # @markdown --- # @markdown >If you want to make multiple images with different prompts, use this. Seperate different prompts for different images with a `~` (example: `prompt1~prompt1~prompt3`). Iter is the iterations you want each image to run for. If you use MSE, I'd type a pretty low number (about 10). multiple_prompt_batches = False # @param {type:"boolean"} multiple_prompt_batches_iter = 300 # @param {type:"number"} # @markdown >`folder_name` is the name of the folder you want to output your result(s) to. Previous outputs will NOT be overwritten. By default, it will be saved to the colab's root folder, but the `save_to_drive` checkbox will save it to `MyDrive\VQGAN_Output` instead. folder_name = "" # @param {type:"string"} save_to_drive = False # @param {type:"boolean"} prompt_experiment = "None" # @param ['None', 'Fever Dream', 'Philipuss’s Basement', 'Vivid Turmoil', 'Mad Dad', 'Platinum', 'Negative Energy'] if prompt_experiment == "Fever Dream": prompts = "<|startoftext|>" + prompts + "<|endoftext|>" elif prompt_experiment == "Vivid Turmoil": prompts = prompts.replace(" ", "¡") prompts = "¬" + prompts + "®" elif prompt_experiment == "Mad Dad": prompts = prompts.replace(" ", "\\s+") elif prompt_experiment == "Platinum": prompts = "~!" + prompts + "!~" prompts = prompts.replace(" ", "") elif prompt_experiment == "Philipuss’s Basement": prompts = "<|startoftext|>" + prompts prompts = prompts.replace(" ", "<|endoftext|><|startoftext|>") elif prompt_experiment == "Lowercase": prompts = prompts.lower() # @markdown >Target images work like prompts, write the name of the image. You can add multiple target images by seperating them with a `|`. target_images = "" # @param {type:"string"} # @markdown >☢ Advanced values. Values of cut_pow below 1 prioritize structure over detail, and vice versa for above 1. Step_size affects how wild the change between iterations is, and if final_step_size is not 0, step_size will interpolate towards it over time. # @markdown >Cutn affects on 'Creativity': less cutout will lead to more random/creative results, sometimes barely readable, while higher values (90+) lead to very stable, photo-like outputs cutn = 130 # @param {type:"number"} cut_pow = 1 # @param {type:"number"} # @markdown >Step_size is like weirdness. Lower: more accurate/realistic, slower; Higher: less accurate/more funky, faster. step_size = 0.1 # @param {type:"number"} # @markdown >Start_step_size is a temporary step_size that will be active only in the first 10 iterations. It (sometimes) helps with speed. If it's set to 0, it won't be used. start_step_size = 0 # @param {type:"number"} # @markdown >Final_step_size is a goal step_size which the AI will try and reach. If set to 0, it won't be used. final_step_size = 0 # @param {type:"number"} if start_step_size <= 0: start_step_size = step_size if final_step_size <= 0: final_step_size = step_size # @markdown --- # @markdown >EMA maintains a moving average of trained parameters. The number below is the rate of decay (higher means slower). ema_val = 0.98 # @param {type:"number"} # @markdown >If you want to keep starting from the same point, set `gen_seed` to a positive number. `-1` will make it random every time. gen_seed = -1 # @param {type:'number'} init_image_in_drive = False # @param {type:"boolean"} if init_image_in_drive and init_image: init_image = "/content/drive/MyDrive/VQGAN_Output/" + init_image images_interval = args2.update # @param {type:"number"} # I think you should give "Free Thoughts on the Proceedings of the Continental Congress" a read, really funny and actually well-written, Hamilton presented it in a bad light IMO. batch_size = 1 # @param {type:"number"} # @markdown --- # @markdown 🔮 **MSE Regulization** 🔮 # Based off of this notebook: https://colab.research.google.com/drive/1gFn9u3oPOgsNzJWEFmdK-N9h_y65b8fj?usp=sharing - already in credits use_mse = args2.mse # @param {type:"boolean"} mse_images_interval = images_interval mse_init_weight = 0.2 # @param {type:"number"} mse_decay_rate = 160 # @param {type:"number"} mse_epoches = 10 # @param {type:"number"} ##@param {type:"number"} # @markdown >Overwrites the usual values during the mse phase if included. If any value is 0, its normal counterpart is used instead. mse_with_zeros = True # @param {type:"boolean"} mse_step_size = 0.87 # @param {type:"number"} mse_cutn = 42 # @param {type:"number"} mse_cut_pow = 0.75 # @param {type:"number"} # @markdown >normal_flip_optim flips between two optimizers during the normal (not MSE) phase. It can improve quality, but it's kind of experimental, use at your own risk. normal_flip_optim = True # @param {type:"boolean"} ##@markdown >Adding some TV may make the image blurrier but also helps to get rid of noise. A good value to try might be 0.1. # tv_weight = 0.1 #@param {type:'number'} # @markdown --- # @markdown >`altprompts` is a set of prompts that take in a different augmentation pipeline, and can have their own cut_pow. At the moment, the default "alt augment" settings flip the picture cutouts upside down before evaluating. This can be good for optical illusion images. If either cut_pow value is 0, it will use the same value as the normal prompts. altprompts = "" # @param {type:"string"} altprompt_mode = "flipped" ##@param ["normal" , "flipped", "sideways"] alt_cut_pow = 0 # @param {type:"number"} alt_mse_cut_pow = 0 # @param {type:"number"} # altprompt_type = "upside-down" #@param ['upside-down', 'as'] ##@markdown --- ##@markdown 💫 **Zooming and Moving** 💫 zoom = False ##@param {type:"boolean"} zoom_speed = 100 ##@param {type:"number"} zoom_frequency = 20 ##@param {type:"number"} # @markdown --- # @markdown On an unrelated note, if you get any errors while running this, restart the runtime and run the first cell again. If that doesn't work either, message me on Discord (Philipuss#4066). model_names = { "vqgan_imagenet_f16_16384": "vqgan_imagenet_f16_16384", "ImageNet 1024": "vqgan_imagenet_f16_1024", "Gumbel 8192": "gumbel_8192", "Sber Gumbel": "sber_gumbel", "imagenet_cin": "imagenet_cin", "WikiArt 1024": "wikiart_1024", "WikiArt 16384": "wikiart_16384", "COCO-Stuff": "coco", "FacesHQ": "faceshq", "S-FLCKR": "sflckr", "WikiArt 7mil": "wikiart_7mil", "COCO 1 Stage": "coco_1stage", } if template == "Better - Fast": prompts = prompts + ". Detailed artwork. ArtStationHQ. unreal engine. 4K HD." elif template == "Better - Slow": prompts = ( prompts + ". Detailed artwork. Trending on ArtStation. unreal engine. | Rendered in Maya. " + prompts + ". 4K HD." ) elif template == "Movie Poster": prompts = prompts + ". Movie poster. Rendered in unreal engine. ArtStationHQ." width = 400 height = 592 elif template == "flag": prompts = ( "A photo of a flag of the country " + prompts + " | Flag of " + prompts + ". White background." ) # import cv2 # img = cv2.imread('templates/flag.png', 0) # cv2.imwrite('templates/final_flag.png', add_noise(img)) init_image = "templates/flag.png" transparent_png = True elif template == "planet": import cv2 img = cv2.imread("templates/planet.png", 0) cv2.imwrite("templates/final_planet.png", add_noise(img)) prompts = ( "A photo of the planet " + prompts + ". Planet in the middle with black background. | The planet of " + prompts + ". Photo of a planet. Black background. Trending on ArtStation. | Colorful." ) init_image = "templates/final_planet.png" elif template == "creature": # import cv2 # img = cv2.imread('templates/planet.png', 0) # cv2.imwrite('templates/final_planet.png', add_noise(img)) prompts = ( "A photo of a creature with " + prompts + ". Animal in the middle with white background. | The creature has " + prompts + ". Photo of a creature/animal. White background. Detailed image of a creature. | White background." ) init_image = "templates/creature.png" # transparent_png = True elif template == "Detailed": prompts = ( prompts + ", by Puer Udger. Detailed artwork, trending on artstation. 4K HD, realism." ) flavor = "cumin" elif template == "human": init_image = "/content/templates/human.png" elif template == "Realistic": cutn = 200 step_size = 0.03 cut_pow = 0.2 flavor = "holywater" elif template == "Consistent Creativity": flavor = "cumin" cut_pow = 0.01 cutn = 136 step_size = 0.08 mse_step_size = 0.41 mse_cut_pow = 0.3 ema_val = 0.99 normal_flip_optim = False elif template == "Smooth": flavor = "wyvern" step_size = 0.10 cutn = 120 normal_flip_optim = False tv_weight = 10 elif template == "Subtle MSE": mse_init_weight = 0.07 mse_decay_rate = 130 mse_step_size = 0.2 mse_cutn = 100 mse_cut_pow = 0.6 elif template == "Balanced": cutn = 130 cut_pow = 1 step_size = 0.16 final_step_size = 0 ema_val = 0.98 mse_init_weight = 0.2 mse_decay_rate = 130 mse_with_zeros = True mse_step_size = 0.9 mse_cutn = 50 mse_cut_pow = 0.8 normal_flip_optim = True elif template == "Size: Square": width = 450 height = 450 elif template == "Size: Landscape": width = 480 height = 336 elif template == "Size: Poster": width = 336 height = 480 elif template == "Negative Prompt": prompts = prompts.replace(":", ":-") prompts = prompts.replace(":--", ":") elif template == "Hyper Fast Results": step_size = 1 ema_val = 0.3 cutn = 30 elif template == "Better Quality": prompts = ( prompts + ":1 | Watermark, blurry, cropped, confusing, cut, incoherent:-1" ) mse_decay = 0 if use_mse == False: mse_init_weight = 0.0 else: mse_decay = mse_init_weight / mse_epoches if seed == -1: seed = None if init_image == "None": init_image = None if target_images == "None" or not target_images: target_images = [] else: target_images = target_images.split("|") target_images = [image.strip() for image in target_images] prompts = [phrase.strip() for phrase in prompts.split("|")] if prompts == [""]: prompts = [] altprompts = [phrase.strip() for phrase in altprompts.split("|")] if altprompts == [""]: altprompts = [] if mse_images_interval == 0: mse_images_interval = images_interval if mse_step_size == 0: mse_step_size = step_size if mse_cutn == 0: mse_cutn = cutn if mse_cut_pow == 0: mse_cut_pow = cut_pow if alt_cut_pow == 0: alt_cut_pow = cut_pow if alt_mse_cut_pow == 0: alt_mse_cut_pow = mse_cut_pow augs = nn.Sequential( K.RandomHorizontalFlip(p=0.5), K.RandomSharpness(0.3, p=0.4), K.RandomGaussianBlur((3, 3), (4.5, 4.5), p=0.3), # K.RandomGaussianNoise(p=0.5), # K.RandomElasticTransform(kernel_size=(33, 33), sigma=(7,7), p=0.2), K.RandomAffine( degrees=30, translate=0.1, p=0.8, padding_mode="border" ), # padding_mode=2 K.RandomPerspective( 0.2, p=0.4, ), K.ColorJitter(hue=0.01, saturation=0.01, p=0.7), K.RandomGrayscale(p=0.1), ) if altprompt_mode == "normal": altaugs = nn.Sequential( K.RandomRotation(degrees=90.0, return_transform=True), K.RandomHorizontalFlip(p=0.5), K.RandomSharpness(0.3, p=0.4), K.RandomGaussianBlur((3, 3), (4.5, 4.5), p=0.3), # K.RandomGaussianNoise(p=0.5), # K.RandomElasticTransform(kernel_size=(33, 33), sigma=(7,7), p=0.2), K.RandomAffine( degrees=30, translate=0.1, p=0.8, padding_mode="border" ), # padding_mode=2 K.RandomPerspective( 0.2, p=0.4, ), K.ColorJitter(hue=0.01, saturation=0.01, p=0.7), K.RandomGrayscale(p=0.1), ) elif altprompt_mode == "flipped": altaugs = nn.Sequential( K.RandomHorizontalFlip(p=0.5), # K.RandomRotation(degrees=90.0), K.RandomVerticalFlip(p=1), K.RandomSharpness(0.3, p=0.4), K.RandomGaussianBlur((3, 3), (4.5, 4.5), p=0.3), # K.RandomGaussianNoise(p=0.5), # K.RandomElasticTransform(kernel_size=(33, 33), sigma=(7,7), p=0.2), K.RandomAffine( degrees=30, translate=0.1, p=0.8, padding_mode="border" ), # padding_mode=2 K.RandomPerspective( 0.2, p=0.4, ), K.ColorJitter(hue=0.01, saturation=0.01, p=0.7), K.RandomGrayscale(p=0.1), ) elif altprompt_mode == "sideways": altaugs = nn.Sequential( K.RandomHorizontalFlip(p=0.5), # K.RandomRotation(degrees=90.0), K.RandomVerticalFlip(p=1), K.RandomSharpness(0.3, p=0.4), K.RandomGaussianBlur((3, 3), (4.5, 4.5), p=0.3), # K.RandomGaussianNoise(p=0.5), # K.RandomElasticTransform(kernel_size=(33, 33), sigma=(7,7), p=0.2), K.RandomAffine( degrees=30, translate=0.1, p=0.8, padding_mode="border" ), # padding_mode=2 K.RandomPerspective( 0.2, p=0.4, ), K.ColorJitter(hue=0.01, saturation=0.01, p=0.7), K.RandomGrayscale(p=0.1), ) if multiple_prompt_batches: prompts_all = str(prompts).split("~") else: prompts_all = prompts multiple_prompt_batches_iter = iterations if multiple_prompt_batches: mtpl_prmpts_btchs = len(prompts_all) else: mtpl_prmpts_btchs = 1 # print(mtpl_prmpts_btchs) steps_path = "./" zoom_path = "./" path = "./" iterations = multiple_prompt_batches_iter for pr in range(0, mtpl_prmpts_btchs): # print(prompts_all[pr].replace('[\'', '').replace('\']', '')) if multiple_prompt_batches: prompts = prompts_all[pr].replace("['", "").replace("']", "") if zoom: mdf_iter = round(iterations / zoom_frequency) else: mdf_iter = 2 zoom_frequency = iterations for iter in range(1, mdf_iter): if zoom: if iter != 0: image = Image.open("progress.png") area = (0, 0, width - zoom_speed, height - zoom_speed) cropped_img = image.crop(area) cropped_img.show() new_image = cropped_img.resize((width, height)) new_image.save("zoom.png") init_image = "zoom.png" args = argparse.Namespace( prompts=prompts, altprompts=altprompts, image_prompts=target_images, noise_prompt_seeds=[], noise_prompt_weights=[], size=[width, height], init_image=init_image, png=transparent_png, init_weight=mse_init_weight, #vqgan_model=model_names[model], step_size=step_size, start_step_size=start_step_size, final_step_size=final_step_size, cutn=cutn, cut_pow=cut_pow, mse_cutn=mse_cutn, mse_cut_pow=mse_cut_pow, mse_step_size=mse_step_size, display_freq=images_interval, mse_display_freq=mse_images_interval, max_iterations=zoom_frequency, mse_end=0, seed=seed, folder_name=folder_name, save_to_drive=save_to_drive, mse_decay_rate=mse_decay_rate, mse_decay=mse_decay, mse_with_zeros=mse_with_zeros, normal_flip_optim=normal_flip_optim, ema_val=ema_val, augs=augs, altaugs=altaugs, alt_cut_pow=alt_cut_pow, alt_mse_cut_pow=alt_mse_cut_pow, is_gumbel=is_gumbel, gen_seed=gen_seed, ) mh = ModelHost(args) x = 0 #for x in range(batch_size): mh.setup_model(x) mh.run(x) image_data = Image.open(args2.image_file) os.remove(args2.image_file) return(image_data) #return(last_iter) #x = x + 1 if zoom: files = os.listdir(steps_path) for index, file in enumerate(files): os.rename( os.path.join(steps_path, file), os.path.join( steps_path, "".join([str(index + 1 + zoom_frequency * iter), ".png"]), ), ) index = index + 1 from pathlib import Path import shutil src_path = steps_path trg_path = zoom_path for src_file in range(1, mdf_iter): shutil.move(os.path.join(src_path, src_file), trg_path) ##################### START GRADIO HERE ############################ image = gr.outputs.Image(type="pil", label="Your result") #def cvt_2_base64(file_name): # with open(file_name , "rb") as image_file : # data = base64.b64encode(image_file.read()) # return data.decode('utf-8') #base64image = "data:image/jpg;base64,"+cvt_2_base64('flavors.jpg') #markdown = gr.Markdown("") #def test(raw_input): # pass #setattr(markdown, "requires_permissions", False) #setattr(markdown, "label", "Flavors") #setattr(markdown, "preprocess", test) iface = gr.Interface( fn=run_all, inputs=[ gr.inputs.Textbox(label="Prompt - try adding increments to your prompt such as 'oil on canvas', 'a painting', 'a book cover'",default="the milky way in a milk bottle"), gr.inputs.Slider(label="Width", default=256, minimum=32, step=32, maximum=512), gr.inputs.Slider(label="Height", default=256, minimum=32, step=32, maximum=512), gr.inputs.Dropdown(label="Style - Hyper Fast Results is fast but compromises a bit of the quality",choices=["Default","Balanced","Detailed","Consistent Creativity","Realistic","Smooth","Subtle MSE","Hyper Fast Results"],default="Hyper Fast Results"), gr.inputs.Slider(label="Steps - more steps can increase quality but will take longer to generate. All styles that are not Hyper Fast need at least 200 steps",default=50,maximum=300,minimum=1,step=1), gr.inputs.Dropdown(label="Flavor - pick a flavor for the style of the images",choices=["ginger", "cumin", "holywater", "zynth", "wyvern", "aaron", "moth", "juu"]), #markdown ], outputs=image, title="Generate images from text with VQGAN+CLIP (Hypertron v2)", description="