Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- import joblib.py +58 -0
- model_1.joblib +3 -0
- requirements.txt +5 -0
- unique_values_1.joblib +3 -0
import joblib.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import joblib
|
2 |
+
import pandas as pd
|
3 |
+
import streamlit as st
|
4 |
+
|
5 |
+
slope_DICT = {'normal':0,
|
6 |
+
'fixed defect':1,
|
7 |
+
'reversable defect':2
|
8 |
+
}
|
9 |
+
|
10 |
+
model = joblib.load('model_1.joblib')
|
11 |
+
unique_values = joblib.load('unique_values_1.joblib')
|
12 |
+
|
13 |
+
unique_sex = unique_values["sex"]
|
14 |
+
unique_slope = unique_values["slope"]
|
15 |
+
unique_fbs = unique_values["fbs"]
|
16 |
+
unique_exang = unique_values["exang"]
|
17 |
+
|
18 |
+
|
19 |
+
def main():
|
20 |
+
st.title("Heart Disease Analysis")
|
21 |
+
|
22 |
+
with st.form("questionaire"):
|
23 |
+
sex = st.selectbox("Sex", unique_sex)
|
24 |
+
age = st.slider("Age", min_value=10, max_value=100)
|
25 |
+
cp = st.slider("cp", min_value=0, max_value=3)
|
26 |
+
trestbps = st.slider("trestbps", min_value=90, max_value=200)
|
27 |
+
chol = st.slider("chol", min_value=120, max_value=570)
|
28 |
+
fbs = st.selectbox("fbs", unique_fbs)
|
29 |
+
restecg = st.slider("restecg", min_value=0, max_value=2)
|
30 |
+
thalach = st.slider("thalach", min_value=70, max_value=210)
|
31 |
+
exang = st.selectbox("exang",unique_exang )
|
32 |
+
oldpeak = st.slider("oldpeak", min_value=0, max_value=7)
|
33 |
+
slope = st.selectbox("slope", unique_slope)
|
34 |
+
ca = st.slider("ca", min_value=0, max_value=3)
|
35 |
+
thal = st.slider("ca", min_value=0, max_value=3)
|
36 |
+
|
37 |
+
|
38 |
+
clicked = st.form_submit_button("Predict Disease")
|
39 |
+
if clicked:
|
40 |
+
result=model.predict(pd.DataFrame({"sex": [sex],
|
41 |
+
"age": [age],
|
42 |
+
"cp": [cp],
|
43 |
+
"trestbps": [trestbps],
|
44 |
+
"chol": [chol],
|
45 |
+
"fbs": [fbs],
|
46 |
+
"restecg": [restecg],
|
47 |
+
"thalach": [thalach],
|
48 |
+
"exang": [exang],
|
49 |
+
"oldpeak": [oldpeak],
|
50 |
+
"slope": [slope_DICT[slope]],
|
51 |
+
"ca": [ca],
|
52 |
+
"thal": [thal]
|
53 |
+
}))
|
54 |
+
result = 'disease' if result[0] == 1 else 'no disease'
|
55 |
+
st.success('The predicted heart disease is {}'.format(result))
|
56 |
+
|
57 |
+
if __name__=='__main__':
|
58 |
+
main()
|
model_1.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:411d378491df1cf609d9bdca335abc8221a7e2f693620119e831b999f52c05ba
|
3 |
+
size 1117215
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
joblib
|
2 |
+
pandas
|
3 |
+
scikit-learn==1.2.2
|
4 |
+
xgboost==1.7.6
|
5 |
+
altair<5
|
unique_values_1.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:68131164199551731df29aaf451c1b689a14ee9de913e908bb95e04a9ffd9c18
|
3 |
+
size 3922
|