import torch
from torchvision import transforms as T
import gradio as gr
class App:
title = 'Scene Text Recognition with
Permuted Autoregressive Sequence Models'
models = ['parseq', 'parseq_tiny', 'abinet', 'crnn', 'trba', 'vitstr']
def __init__(self):
self._model_cache = {}
self._preprocess = T.Compose([
T.Resize((32, 128), T.InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(0.5, 0.5)
])
def _get_model(self, name):
if name in self._model_cache:
return self._model_cache[name]
model = torch.hub.load('baudm/parseq', name, pretrained=True).eval()
self._model_cache[name] = model
return model
@torch.inference_mode()
def __call__(self, model_name, image):
if image is None:
return '', []
model = self._get_model(model_name)
image = self._preprocess(image.convert('RGB')).unsqueeze(0)
# Greedy decoding
pred = model(image).softmax(-1)
label, _ = model.tokenizer.decode(pred)
raw_label, raw_confidence = model.tokenizer.decode(pred, raw=True)
# Format confidence values
max_len = 25 if model_name == 'crnn' else len(label[0]) + 1
conf = list(map('{:0.1f}'.format, raw_confidence[0][:max_len].tolist()))
return label[0], [raw_label[0][:max_len], conf]
def main():
app = App()
with gr.Blocks(analytics_enabled=False, title=app.title.replace('
', ' ')) as demo:
model_name = gr.Radio(app.models, value=app.models[0], label='The STR model to use')
with gr.Tabs():
with gr.TabItem('Image Upload'):
image_upload = gr.Image(type='pil', label='Image')
read_upload = gr.Button('Read Text')
output = gr.Textbox(max_lines=1, label='Model output')
#adv_output = gr.Checkbox(label='Show detailed output')
raw_output = gr.Dataframe(row_count=2, col_count=0, label='Raw output with confidence values ([0, 1] interval; [B] - BLANK token; [E] - EOS token)')
read_upload.click(app, inputs=[model_name, image_upload], outputs=[output, raw_output])
#adv_output.change(lambda x: gr.update(visible=x), inputs=adv_output, outputs=raw_output)
demo.queue(max_size=20)
demo.launch()
if __name__ == '__main__':
main()