import torch from torchvision import transforms as T import gradio as gr class App: title = 'Scene Text Recognition with
Permuted Autoregressive Sequence Models' models = ['parseq', 'parseq_tiny', 'abinet', 'crnn', 'trba', 'vitstr'] def __init__(self): self._model_cache = {} self._preprocess = T.Compose([ T.Resize((32, 128), T.InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(0.5, 0.5) ]) def _get_model(self, name): if name in self._model_cache: return self._model_cache[name] model = torch.hub.load('baudm/parseq', name, pretrained=True).eval() self._model_cache[name] = model return model @torch.inference_mode() def __call__(self, model_name, image): if image is None: return '', [] model = self._get_model(model_name) image = self._preprocess(image.convert('RGB')).unsqueeze(0) # Greedy decoding pred = model(image).softmax(-1) label, _ = model.tokenizer.decode(pred) raw_label, raw_confidence = model.tokenizer.decode(pred, raw=True) # Format confidence values max_len = 25 if model_name == 'crnn' else len(label[0]) + 1 conf = list(map('{:0.1f}'.format, raw_confidence[0][:max_len].tolist())) return label[0], [raw_label[0][:max_len], conf] def main(): app = App() with gr.Blocks(analytics_enabled=False, title=app.title.replace('
', ' ')) as demo: model_name = gr.Radio(app.models, value=app.models[0], label='The STR model to use') with gr.Tabs(): with gr.TabItem('Image Upload'): image_upload = gr.Image(type='pil', label='Image') read_upload = gr.Button('Read Text') output = gr.Textbox(max_lines=1, label='Model output') #adv_output = gr.Checkbox(label='Show detailed output') raw_output = gr.Dataframe(row_count=2, col_count=0, label='Raw output with confidence values ([0, 1] interval; [B] - BLANK token; [E] - EOS token)') read_upload.click(app, inputs=[model_name, image_upload], outputs=[output, raw_output]) #adv_output.change(lambda x: gr.update(visible=x), inputs=adv_output, outputs=raw_output) demo.queue(max_size=20) demo.launch() if __name__ == '__main__': main()