Spaces:
Sleeping
Sleeping
init
Browse files- .dockerignore +19 -0
- .gitattributes +2 -0
- .gitignore +7 -0
- Dockerfile +44 -0
- faiss_indexes/.gitkeep +0 -0
- faiss_indexes/faiss__bge_5000.index +3 -0
- faiss_indexes/filtered_db_data__bge_5000.json +3 -0
- faiss_indexes/index_keys__bge_5000.json +3 -0
- requirements.txt +6 -0
- search_api.py +102 -0
.dockerignore
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__
|
2 |
+
*.pyc
|
3 |
+
*.pyo
|
4 |
+
*.pyd
|
5 |
+
*.db
|
6 |
+
*.sqlite
|
7 |
+
*.log
|
8 |
+
.DS_Store
|
9 |
+
.env
|
10 |
+
venv
|
11 |
+
*.bat
|
12 |
+
desktop.ini
|
13 |
+
*.git
|
14 |
+
.cache
|
15 |
+
.local
|
16 |
+
.nv
|
17 |
+
*.bash_history
|
18 |
+
*.zip
|
19 |
+
*.yaml
|
.gitattributes
CHANGED
@@ -8,6 +8,8 @@
|
|
8 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
11 |
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
|
|
8 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.index filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.json filter=lfs diff=lfs merge=lfs -text
|
13 |
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
14 |
*.model filter=lfs diff=lfs merge=lfs -text
|
15 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.bat
|
2 |
+
__pycache__
|
3 |
+
.cache
|
4 |
+
.local
|
5 |
+
.nv
|
6 |
+
*.bash_history
|
7 |
+
*.zip
|
Dockerfile
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use an official Python runtime as a parent image
|
2 |
+
FROM python:3.10-slim-bullseye
|
3 |
+
|
4 |
+
# Set Python to use unbuffered mode
|
5 |
+
ENV PYTHONUNBUFFERED=1
|
6 |
+
|
7 |
+
ENV PATH="/var/www/.local/bin:${PATH}"
|
8 |
+
|
9 |
+
# Create a non-root user
|
10 |
+
RUN useradd -m -u 1000 -U -s /bin/bash myuser
|
11 |
+
|
12 |
+
# Install dependencies
|
13 |
+
RUN apt-get update && \
|
14 |
+
apt-get install -y --no-install-recommends python3-pip python3-dev && \
|
15 |
+
rm -rf /var/lib/apt/lists/*
|
16 |
+
|
17 |
+
# Set the working directory in the container
|
18 |
+
RUN mkdir /var/www
|
19 |
+
ENV HOME=/var/www
|
20 |
+
WORKDIR /var/www
|
21 |
+
|
22 |
+
# Change ownership of /var/www to the non-root user
|
23 |
+
RUN chown -R myuser:myuser /var/www
|
24 |
+
|
25 |
+
# Switch to the non-root user
|
26 |
+
USER myuser
|
27 |
+
|
28 |
+
# Copy the current directory contents into the container at /var/www
|
29 |
+
COPY . /var/www
|
30 |
+
|
31 |
+
# Install Python dependencies
|
32 |
+
RUN pip install --user -r requirements.txt
|
33 |
+
|
34 |
+
# Expose the port
|
35 |
+
EXPOSE 7860
|
36 |
+
|
37 |
+
RUN mkdir /var/www/logs
|
38 |
+
|
39 |
+
# Set environment variables
|
40 |
+
ENV MODEL_PATH="BAAI/bge-m3" \
|
41 |
+
DEVICE="cpu"
|
42 |
+
|
43 |
+
# Run fastapi_app.py when the container launches
|
44 |
+
CMD python3 -m uvicorn search_api:app --host=0.0.0.0 --port=7860
|
faiss_indexes/.gitkeep
ADDED
File without changes
|
faiss_indexes/faiss__bge_5000.index
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c603ce88279357224673c7f87067c794bbaa8a9b10c1b75f42bd6971979579cf
|
3 |
+
size 11771949
|
faiss_indexes/filtered_db_data__bge_5000.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:49943f09e2392bb7450171eeb8cbed925e06b1e0d39c74415bc3ea8fd01c8b45
|
3 |
+
size 4735630
|
faiss_indexes/index_keys__bge_5000.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:afb0846481da81b8eac5a52134d5292041c72cbd0e0ab9712ce016c375554c34
|
3 |
+
size 523565
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy==1.23.5
|
2 |
+
faiss-cpu==1.7.3
|
3 |
+
torch==2.0.1
|
4 |
+
transformers==4.30.2
|
5 |
+
fastapi==0.95.2
|
6 |
+
pydantic==1.10.7
|
search_api.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import numpy as np
|
4 |
+
import faiss
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from torch.cuda.amp import autocast
|
8 |
+
from transformers import AutoTokenizer, AutoModel
|
9 |
+
from fastapi import FastAPI, HTTPException
|
10 |
+
from pydantic import BaseModel
|
11 |
+
|
12 |
+
class FaissSearch:
|
13 |
+
def __init__(self, model_path, index_path, index_keys_path, filtered_db_path, device='cuda:0'):
|
14 |
+
self.device = device
|
15 |
+
self.model_path = model_path
|
16 |
+
self.index = faiss.read_index(index_path)
|
17 |
+
self.max_len = 512
|
18 |
+
|
19 |
+
with open(index_keys_path, 'r', encoding='utf-8') as f:
|
20 |
+
self.index_keys = json.load(f)
|
21 |
+
|
22 |
+
with open(filtered_db_path, 'r', encoding='utf-8') as f:
|
23 |
+
self.filtered_db_data = json.load(f)
|
24 |
+
|
25 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
26 |
+
self.model = None
|
27 |
+
|
28 |
+
def _load_model(self):
|
29 |
+
if self.model is None:
|
30 |
+
self.model = AutoModel.from_pretrained(self.model_path).to(self.device)
|
31 |
+
|
32 |
+
def _query_tokenization(self, text):
|
33 |
+
#text = "query: " + text # if using e5 model
|
34 |
+
text = text
|
35 |
+
tokens = self.tokenizer(
|
36 |
+
text,
|
37 |
+
return_tensors="pt",
|
38 |
+
padding='max_length',
|
39 |
+
truncation=True,
|
40 |
+
max_length=self.max_len
|
41 |
+
)
|
42 |
+
return tokens
|
43 |
+
|
44 |
+
def _query_embed_extraction(self, tokens, do_normalization=True):
|
45 |
+
self._load_model()
|
46 |
+
self.model.eval()
|
47 |
+
with torch.no_grad():
|
48 |
+
with autocast():
|
49 |
+
inputs = {k: v.to(self.device) for k, v in tokens.items()}
|
50 |
+
outputs = self.model(**inputs)
|
51 |
+
embedding = outputs.last_hidden_state[:, 0].cpu()
|
52 |
+
|
53 |
+
if do_normalization:
|
54 |
+
embedding = F.normalize(embedding, dim=-1)
|
55 |
+
return embedding.numpy()
|
56 |
+
|
57 |
+
def _search_results_filtering(self, preds, dists):
|
58 |
+
sorted_values = [(ref, score) for ref, score in zip(preds, dists)]
|
59 |
+
sorted_values = sorted(sorted_values, key=lambda x: x[1], reverse=True)
|
60 |
+
sorted_preds = [x[0] for x in sorted_values]
|
61 |
+
sorted_scores = [x[1] for x in sorted_values]
|
62 |
+
return sorted_preds, sorted_scores
|
63 |
+
|
64 |
+
def search(self, query, top=20):
|
65 |
+
query_tokens = self._query_tokenization(query)
|
66 |
+
query_embeds = self._query_embed_extraction(query_tokens, do_normalization=True)
|
67 |
+
distances, indices = self.index.search(query_embeds, len(self.filtered_db_data))
|
68 |
+
|
69 |
+
preds = [self.index_keys[str(x)] for x in indices[0]]
|
70 |
+
preds, scores = self._search_results_filtering(preds, distances[0])
|
71 |
+
docs = [self.filtered_db_data[ref] for ref in preds]
|
72 |
+
|
73 |
+
torch.cuda.empty_cache()
|
74 |
+
|
75 |
+
return preds[:top], docs[:top]
|
76 |
+
|
77 |
+
|
78 |
+
STEP = 5000
|
79 |
+
model_path = os.environ.get("MODEL_PATH", "bge/")
|
80 |
+
index_path = f"faiss_indexes/faiss__bge_{STEP}.index"
|
81 |
+
index_keys_path = f"faiss_indexes/index_keys__bge_{STEP}.json"
|
82 |
+
filtered_db_path = f"faiss_indexes/filtered_db_data__bge_{STEP}.json"
|
83 |
+
|
84 |
+
searcher = FaissSearch(model_path, index_path, index_keys_path, filtered_db_path, os.environ.get("DEVICE", "cuda:0"))
|
85 |
+
|
86 |
+
app = FastAPI()
|
87 |
+
|
88 |
+
class SearchRequest(BaseModel):
|
89 |
+
query: str
|
90 |
+
top: int = 10
|
91 |
+
|
92 |
+
class SearchResponse(BaseModel):
|
93 |
+
predictions: list
|
94 |
+
documents: list
|
95 |
+
|
96 |
+
@app.post("/search", response_model=SearchResponse)
|
97 |
+
async def search_endpoint(request: SearchRequest):
|
98 |
+
try:
|
99 |
+
preds, docs = searcher.search(request.query, top=request.top)
|
100 |
+
return SearchResponse(predictions=preds, documents=docs)
|
101 |
+
except Exception as e:
|
102 |
+
raise HTTPException(status_code=500, detail=str(e))
|