Spaces:
Paused
Paused
File size: 7,951 Bytes
377a7af 98e80cb 377a7af ec87ae7 377a7af c10b647 377a7af a3a2261 377a7af f5355b8 377a7af a3a2261 32fc9c0 377a7af 98e80cb 377a7af a3a2261 32fc9c0 377a7af a3a2261 377a7af f5355b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
from flask import Flask, request, Response
import logging
from llama_cpp import Llama
import threading
from huggingface_hub import snapshot_download
SYSTEM_PROMPT = "Ты — русскоязычный автоматический ассистент. Ты максимально точно и отвечаешь на запросы пользователя, используя русский язык."
SYSTEM_TOKEN = 1788
USER_TOKEN = 1404
BOT_TOKEN = 9225
LINEBREAK_TOKEN = 13
ROLE_TOKENS = {
"user": USER_TOKEN,
"bot": BOT_TOKEN,
"system": SYSTEM_TOKEN
}
# Create a lock object
lock = threading.Lock()
app = Flask(__name__)
# Configure Flask logging
app.logger.setLevel(logging.DEBUG) # Set the desired logging level
# Initialize the model when the application starts
#model_path = "../models/model-q4_K.gguf" # Replace with the actual model path
#model_name = "model/ggml-model-q4_K.gguf"
#repo_name = "IlyaGusev/saiga2_13b_gguf"
#model_name = "model-q4_K.gguf"
repo_name = "IlyaGusev/saiga2_70b_gguf"
model_name = "ggml-model-q4_1.gguf"
snapshot_download(repo_id=repo_name, local_dir=".", allow_patterns=model_name)
model = Llama(
model_path=model_name,
n_ctx=2000,
n_parts=1,
#n_batch=100,
logits_all=True,
#n_threads=12,
verbose=True,
n_gpu_layers=35,
n_gqa=8 #must be set for 70b models
)
def get_message_tokens(model, role, content):
message_tokens = model.tokenize(content.encode("utf-8"))
message_tokens.insert(1, ROLE_TOKENS[role])
message_tokens.insert(2, LINEBREAK_TOKEN)
message_tokens.append(model.token_eos())
return message_tokens
def get_system_tokens(model):
system_message = {
"role": "system",
"content": SYSTEM_PROMPT
}
return get_message_tokens(model, **system_message)
def get_system_tokens_for_preprompt(model, preprompt):
system_message = {
"role": "system",
"content": preprompt
}
return get_message_tokens(model, **system_message)
app.logger.info('Evaluating system tokens start')
#system_tokens = get_system_tokens(model)
#model.eval(system_tokens)
app.logger.info('Evaluating system tokens end')
stop_generation = False
def generate_tokens(model, generator):
global stop_generation
app.logger.info('generate_tokens started')
with lock:
try:
for token in generator:
if token == model.token_eos() or stop_generation:
stop_generation = False
app.logger.info('Abort generating')
yield b'' # End of chunk
break
token_str = model.detokenize([token])#.decode("utf-8", errors="ignore")
yield token_str
except Exception as e:
app.logger.info('generator exception')
yield b'' # End of chunk
@app.route('/stop_generation', methods=['GET'])
def handler_stop_generation():
global stop_generation
stop_generation = True
return Response('Stopped', content_type='text/plain')
@app.route('/', methods=['GET', 'PUT', 'DELETE', 'PATCH'])
def generate_unknown_response():
app.logger.info('unknown method: '+request.method)
try:
request_payload = request.get_json()
app.logger.info('payload: '+request.get_json())
except Exception as e:
app.logger.info('payload empty')
return Response('What do you want?', content_type='text/plain')
@app.route('/search_request', methods=['POST'])
def generate_search_request():
global stop_generation
stop_generation = False
model.reset()
data = request.get_json()
app.logger.info(data)
user_query = data.get("query", "")
preprompt = data.get("preprompt", "Ты — русскоязычный автоматический ассистент для написании запросов для поисковых систем на русском языке. Отвечай на сообщения пользователя только текстом поискового запроса, релевантным запросу пользователя. Если запрос пользователя уже хорош, используй его в качестве результата.")
parameters = data.get("parameters", {})
# Extract parameters from the request
temperature = 0.01
truncate = parameters.get("truncate", 1000)
max_new_tokens = parameters.get("max_new_tokens", 1024)
top_p = 0.8
repetition_penalty = parameters.get("repetition_penalty", 1.2)
top_k = 20
return_full_text = parameters.get("return_full_text", False)
tokens = get_system_tokens_for_preprompt(model, preprompt)
tokens.append(LINEBREAK_TOKEN)
tokens = get_message_tokens(model=model, role="user", content=user_query[:200]) + [model.token_bos(), BOT_TOKEN, LINEBREAK_TOKEN]
generator = model.generate(
tokens,
top_k=top_k,
top_p=top_p,
temp=temperature,
repeat_penalty=repetition_penalty
)
# Use Response to stream tokens
return Response(generate_tokens(model, generator), content_type='text/plain', status=200, direct_passthrough=True)
@app.route('/', methods=['POST'])
def generate_response():
global stop_generation
stop_generation = False
model.reset()
data = request.get_json()
app.logger.info(data)
messages = data.get("messages", [])
preprompt = data.get("preprompt", "")
parameters = data.get("parameters", {})
# Extract parameters from the request
temperature = 0.02#parameters.get("temperature", 0.01)
truncate = parameters.get("truncate", 1000)
max_new_tokens = parameters.get("max_new_tokens", 1024)
top_p = 80#parameters.get("top_p", 0.85)
repetition_penalty = parameters.get("repetition_penalty", 1.2)
top_k = 25#parameters.get("top_k", 30)
return_full_text = parameters.get("return_full_text", False)
# Generate the response
#system_tokens = get_system_tokens(model)
#tokens = system_tokens
#if preprompt != "":
# tokens = get_system_tokens_for_preprompt(model, preprompt)
#else:
tokens = get_system_tokens(model)
tokens.append(LINEBREAK_TOKEN)
#model.eval(tokens)
tokens = []
for message in messages:#[:-1]:
if message.get("from") == "assistant":
message_tokens = get_message_tokens(model=model, role="bot", content=message.get("content", ""))
else:
message_tokens = get_message_tokens(model=model, role="user", content=message.get("content", ""))
tokens.extend(message_tokens)
#LINEBREAK_TOKEN)
#app.logger.info('model.eval start')
#model.eval(tokens)
#app.logger.info('model.eval end')
#last_message = messages[-1]
#if last_message.get("from") == "assistant":
# last_message_tokens = get_message_tokens(model=model, role="bot", content=last_message.get("content", ""))
#else:
# last_message_tokens = get_message_tokens(model=model, role="user", content=last_message.get("content", ""))
tokens.extend([model.token_bos(), BOT_TOKEN, LINEBREAK_TOKEN])
app.logger.info('Prompt:')
app.logger.info(model.detokenize(tokens).decode("utf-8", errors="ignore"))
app.logger.info('Generate started')
generator = model.generate(
tokens,
top_k=top_k,
top_p=top_p,
temp=temperature,
repeat_penalty=repetition_penalty
)
app.logger.info('Generator created')
# Use Response to stream tokens
return Response(generate_tokens(model, generator), content_type='text/plain', status=200, direct_passthrough=True)
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860, debug=False, threaded=False) |