File size: 4,791 Bytes
407b426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
"""
This module contains the functions to get PoS tags using Spacy and return a Markdown table
"""

from .alignment_mappers import get_alignment_mapping

from flair.models import SequenceTagger
from flair.data import Sentence

import spacy
from spacy.cli import download
download("en_core_web_sm")
import en_core_web_sm

import nltk
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')

from textblob import TextBlob


def get_spacy_postag_dict(target=""):
    ''' 
    Get spacy pos tags 
    '''
    nlp = en_core_web_sm.load()
    target_tokenized = nlp(target)
    spacy_postag_dict = dict((token.text, token.tag_)
                             for token in target_tokenized)
    return spacy_postag_dict

def get_nltk_postag_dict(target=""):
    ''' 
    Get nltk pos tags 
    '''
    target_tokenized = nltk.tokenize.word_tokenize(target)
    nltk_postag_dict = dict((key, value)
                            for key, value in nltk.pos_tag(target_tokenized))
    return nltk_postag_dict

def get_flair_postag_dict(target=""):
    ''' 
    Get flair pos tags 
    '''
    tagger = SequenceTagger.load("pos")
    target_tokenized = Sentence(target)
    tagger.predict(target_tokenized)
    flair_postag_dict = dict((token.text, token.tag)
                             for token in target_tokenized)
    return flair_postag_dict

def get_textblob_postag_dict(target=""):
    ''' 
    Get textblob pos tags 
    '''
    blob = TextBlob(target)
    textblob_postag_dict = dict(blob.tags)
    return textblob_postag_dict

def get_postag(
        get_postag_dict,
        source="", 
        target="", 
        model_path="musfiqdehan/bn-en-word-aligner"):
    """Get Spacy PoS Tags and return a Markdown table"""

    sent_src, sent_tgt, align_words = get_alignment_mapping(
        source=source, target=target, model_path=model_path
    )
    postag_dict = get_postag_dict(target=target)

    mapped_sent_src = []

    html_table = '''
                    <table>
                        <thead>
                            <th>Bangla</th>
                            <th>English</th>
                            <th>PoS Tags</th>
                        </thead>
                '''

    for i, j in sorted(align_words):
        punc = r"""!()-[]{}।;:'"\,<>./?@#$%^&*_~"""
        if sent_src[i] in punc or sent_tgt[j] in punc:
            mapped_sent_src.append(sent_src[i])

            html_table += f'''
                            <tbody>
                                <tr>
                                    <td> {sent_src[i]} </td>
                                    <td> {sent_tgt[j]} </td>
                                    <td> PUNC </td>
                                </tr>
                            '''
        else:
            mapped_sent_src.append(sent_src[i])

            html_table += f'''
                            <tr>
                                <td> {sent_src[i]} </td>
                                <td> {sent_tgt[j]} </td>
                                <td> {postag_dict[sent_tgt[j]]} </td>
                            </tr>
                            '''

    unks = list(set(sent_src).difference(set(mapped_sent_src)))
    for word in unks:

        html_table += f'''
                        <tr>
                            <td> {word} </td>
                            <td> N/A </td>
                            <td> UNK </td>
                        </tr>                         
                    '''
        
    html_table += '''
                        </tbody>
                    </table>
                '''
    
    pos_accuracy = ((len(sent_src) - len(unks)) / len(sent_src))
    pos_accuracy = f"{pos_accuracy:0.2%}"

    return html_table, pos_accuracy


def select_pos_tagger(src, tgt, tagger):
    ''' 
    Select the PoS tagger 
    '''

    result = None
    pos_accuracy = None

    if tagger == "spaCy":
        result, pos_accuracy = get_postag(
            get_spacy_postag_dict,
            source=src,
            target=tgt,
            model_path="musfiqdehan/bn-en-word-aligner", 
        )
    elif tagger == "NLTK":
        result, pos_accuracy = get_postag(
            get_nltk_postag_dict,
            source=src,
            target=tgt,
            model_path="musfiqdehan/bn-en-word-aligner", 
        )
    elif tagger == "Flair":
        result, pos_accuracy = get_postag(
            get_flair_postag_dict,
            source=src,
            target=tgt,
            model_path="musfiqdehan/bn-en-word-aligner", 
        )
    elif tagger == "TextBlob":
        result, pos_accuracy = get_postag(
            get_textblob_postag_dict,
            source=src,
            target=tgt,
            model_path="musfiqdehan/bn-en-word-aligner", 
        )
    return result, pos_accuracy