File size: 5,697 Bytes
4a52b88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b83453
 
 
 
 
4a52b88
6b83453
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
"""
This module contains the helper functions to get the word alignment mapping between two sentences.
"""

import torch
import itertools
import transformers
from transformers import logging

# Set the verbosity to error, so that the warning messages are not printed
logging.set_verbosity_warning()
logging.set_verbosity_error()


def select_model(model_name):
    """
    Select Model
    """
    if model_name == "Google-mBERT (Base-Multilingual)":
        model_name="bert-base-multilingual-cased"
    elif model_name == "Neulab-AwesomeAlign (Bn-En-0.5M)":
        model_name="musfiqdehan/bn-en-word-aligner"
    elif model_name == "BUET-BanglaBERT (Large)":
        model_name="csebuetnlp/banglabert_large"
    elif model_name == "SagorSarker-BanglaBERT (Base)":
        model_name="sagorsarker/bangla-bert-base"
    elif model_name == "SentenceTransformers-LaBSE (Multilingual)":
        model_name="sentence-transformers/LaBSE"

    return model_name


def get_alignment_mapping(source="", target="", model_name=""):
    """
    Get Aligned Words
    """
    model_name = select_model(model_name)

    model = transformers.BertModel.from_pretrained(model_name)
    tokenizer = transformers.BertTokenizer.from_pretrained(model_name)

    # pre-processing
    sent_src, sent_tgt = source.strip().split(), target.strip().split()

    token_src, token_tgt = [tokenizer.tokenize(word) for word in sent_src], [
        tokenizer.tokenize(word) for word in sent_tgt]
    
    wid_src, wid_tgt = [tokenizer.convert_tokens_to_ids(x) for x in token_src], [
        tokenizer.convert_tokens_to_ids(x) for x in token_tgt]
    
    ids_src, ids_tgt = tokenizer.prepare_for_model(list(itertools.chain(*wid_src)), return_tensors='pt', model_max_length=tokenizer.model_max_length, truncation=True)['input_ids'], tokenizer.prepare_for_model(list(itertools.chain(*wid_tgt)), return_tensors='pt', truncation=True, model_max_length=tokenizer.model_max_length)['input_ids']
    sub2word_map_src = []

    for i, word_list in enumerate(token_src):
        sub2word_map_src += [i for x in word_list]

    sub2word_map_tgt = []

    for i, word_list in enumerate(token_tgt):
        sub2word_map_tgt += [i for x in word_list]

    # alignment
    align_layer = 8

    threshold = 1e-3

    model.eval()

    with torch.no_grad():
        out_src = model(ids_src.unsqueeze(0), output_hidden_states=True)[
            2][align_layer][0, 1:-1]
        out_tgt = model(ids_tgt.unsqueeze(0), output_hidden_states=True)[
            2][align_layer][0, 1:-1]

        dot_prod = torch.matmul(out_src, out_tgt.transpose(-1, -2))

        softmax_srctgt = torch.nn.Softmax(dim=-1)(dot_prod)
        softmax_tgtsrc = torch.nn.Softmax(dim=-2)(dot_prod)

        softmax_inter = (softmax_srctgt > threshold) * \
            (softmax_tgtsrc > threshold)

    align_subwords = torch.nonzero(softmax_inter, as_tuple=False)

    align_words = set()

    for i, j in align_subwords:
        align_words.add((sub2word_map_src[i], sub2word_map_tgt[j]))

    return sent_src, sent_tgt, align_words



def get_word_mapping(source="", target="", model_name=""):
    """
    Get Word Aligned Mapping Words
    """
    sent_src, sent_tgt, align_words = get_alignment_mapping(
        source=source, target=target, model_name=model_name)

    result = []

    for i, j in sorted(align_words):
        result.append(f'bn:({sent_src[i]}) -> en:({sent_tgt[j]})')

    return result



def get_word_index_mapping(source="", target="", model_name=""):
    """
    Get Word Aligned Mapping Index
    """
    sent_src, sent_tgt, align_words = get_alignment_mapping(
        source=source, target=target, model_name=model_name)

    result = []

    for i, j in sorted(align_words):
        result.append(f'bn:({i}) -> en:({j})')

    return result


def get_alignments_table(
        source="", 
        target="", 
        model_name=""):
    """Get Spacy PoS Tags and return a Markdown table"""

    sent_src, sent_tgt, align_words = get_alignment_mapping(
        source=source, target=target, model_name=model_name
    )

    mapped_sent_src = []

    html_table = '''
                    <table>
                        <thead>
                            <th>Source</th>
                            <th>Target</th>
                        </thead>
                '''

    for i, j in sorted(align_words):
        punc = r"""!()-[]{}।;:'"\,<>./?@#$%^&*_~"""
        if sent_src[i] in punc or sent_tgt[j] in punc:
            mapped_sent_src.append(sent_src[i])

            html_table += f'''
                            <tbody>
                                <tr>
                                    <td> {sent_src[i]} </td>
                                    <td> {sent_tgt[j]} </td>
                                </tr>
                            '''
        else:
            mapped_sent_src.append(sent_src[i])

            html_table += f'''
                            <tr>
                                <td> {sent_src[i]} </td>
                                <td> {sent_tgt[j]} </td>
                            </tr>
                            '''

    unks = list(set(sent_src).difference(set(mapped_sent_src)))
    for word in unks:

        html_table += f'''
                        <tr>
                            <td> {word} </td>
                            <td> N/A </td>
                        </tr>                         
                    '''
        
    html_table += '''
                        </tbody>
                    </table>
                '''
    
    pos_accuracy = ((len(sent_src) - len(unks)) / len(sent_src))
    pos_accuracy = f"{pos_accuracy:0.2%}"

    return html_table, pos_accuracy