""" This module contains the helper functions to get the word alignment mapping between two sentences. """ import torch import itertools import transformers from transformers import logging # Set the verbosity to error, so that the warning messages are not printed logging.set_verbosity_warning() logging.set_verbosity_error() def select_model(model_name): """ Select Model """ if model_name == "Google-mBERT (Base-Multilingual)": model_name="bert-base-multilingual-cased" elif model_name == "Neulab-AwesomeAlign (Bn-En-0.5M)": model_name="musfiqdehan/bn-en-word-aligner" elif model_name == "BUET-BanglaBERT (Large)": model_name="csebuetnlp/banglabert_large" elif model_name == "SagorSarker-BanglaBERT (Base)": model_name="sagorsarker/bangla-bert-base" elif model_name == "SentenceTransformers-LaBSE (Multilingual)": model_name="sentence-transformers/LaBSE" return model_name def get_alignment_mapping(source="", target="", model_name=""): """ Get Aligned Words """ model_name = select_model(model_name) model = transformers.BertModel.from_pretrained(model_name) tokenizer = transformers.BertTokenizer.from_pretrained(model_name) # pre-processing sent_src, sent_tgt = source.strip().split(), target.strip().split() token_src, token_tgt = [tokenizer.tokenize(word) for word in sent_src], [ tokenizer.tokenize(word) for word in sent_tgt] wid_src, wid_tgt = [tokenizer.convert_tokens_to_ids(x) for x in token_src], [ tokenizer.convert_tokens_to_ids(x) for x in token_tgt] ids_src, ids_tgt = tokenizer.prepare_for_model(list(itertools.chain(*wid_src)), return_tensors='pt', model_max_length=tokenizer.model_max_length, truncation=True)['input_ids'], tokenizer.prepare_for_model(list(itertools.chain(*wid_tgt)), return_tensors='pt', truncation=True, model_max_length=tokenizer.model_max_length)['input_ids'] sub2word_map_src = [] for i, word_list in enumerate(token_src): sub2word_map_src += [i for x in word_list] sub2word_map_tgt = [] for i, word_list in enumerate(token_tgt): sub2word_map_tgt += [i for x in word_list] # alignment align_layer = 8 threshold = 1e-3 model.eval() with torch.no_grad(): out_src = model(ids_src.unsqueeze(0), output_hidden_states=True)[ 2][align_layer][0, 1:-1] out_tgt = model(ids_tgt.unsqueeze(0), output_hidden_states=True)[ 2][align_layer][0, 1:-1] dot_prod = torch.matmul(out_src, out_tgt.transpose(-1, -2)) softmax_srctgt = torch.nn.Softmax(dim=-1)(dot_prod) softmax_tgtsrc = torch.nn.Softmax(dim=-2)(dot_prod) softmax_inter = (softmax_srctgt > threshold) * \ (softmax_tgtsrc > threshold) align_subwords = torch.nonzero(softmax_inter, as_tuple=False) align_words = set() for i, j in align_subwords: align_words.add((sub2word_map_src[i], sub2word_map_tgt[j])) return sent_src, sent_tgt, align_words def get_word_mapping(source="", target="", model_name=""): """ Get Word Aligned Mapping Words """ sent_src, sent_tgt, align_words = get_alignment_mapping( source=source, target=target, model_name=model_name) result = [] for i, j in sorted(align_words): result.append(f'bn:({sent_src[i]}) -> en:({sent_tgt[j]})') return result def get_word_index_mapping(source="", target="", model_name=""): """ Get Word Aligned Mapping Index """ sent_src, sent_tgt, align_words = get_alignment_mapping( source=source, target=target, model_name=model_name) result = [] for i, j in sorted(align_words): result.append(f'bn:({i}) -> en:({j})') return result def get_alignments_table( source="", target="", model_name=""): """Get Spacy PoS Tags and return a Markdown table""" sent_src, sent_tgt, align_words = get_alignment_mapping( source=source, target=target, model_name=model_name ) mapped_sent_src = [] html_table = '''
Source | Target | ''' for i, j in sorted(align_words): punc = r"""!()-[]{}ред;:'"\,<>./?@#$%^&*_~""" if sent_src[i] in punc or sent_tgt[j] in punc: mapped_sent_src.append(sent_src[i]) html_table += f'''
---|---|
{sent_src[i]} | {sent_tgt[j]} |
{sent_src[i]} | {sent_tgt[j]} |
{word} | N/A |