Spaces:
Sleeping
Sleeping
File size: 4,917 Bytes
1c6497f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import gradio as gr
import spaces
from huggingface_hub import hf_hub_download
def download_models(model_id):
hf_hub_download("merve/yolov9", filename=f"{model_id}", local_dir=f"./")
return f"./{model_id}"
@spaces.GPU
def yolov9_inference(img_path, model_id, image_size, conf_threshold, iou_threshold):
"""
Load a YOLOv9 model, configure it, perform inference on an image, and optionally adjust
the input size and apply test time augmentation.
:param model_path: Path to the YOLOv9 model file.
:param conf_threshold: Confidence threshold for NMS.
:param iou_threshold: IoU threshold for NMS.
:param img_path: Path to the image file.
:param size: Optional, input size for inference.
:return: A tuple containing the detections (boxes, scores, categories) and the results object for further actions like displaying.
"""
# Import YOLOv9
import yolov9
# Load the model
model_path = download_models(model_id)
model = yolov9.load(model_path, device="cuda:0")
# Set model parameters
model.conf = conf_threshold
model.iou = iou_threshold
# Perform inference
results = model(img_path, size=image_size)
# Optionally, show detection bounding boxes on image
output = results.render()
return output[0]
def app():
with gr.Blocks():
with gr.Row():
with gr.Column():
img_path = gr.Image(type="filepath", label="Image")
model_path = gr.Dropdown(
label="Model",
choices=[
"gelan-c.pt",
"gelan-e.pt",
"yolov9-c.pt",
"yolov9-e.pt",
],
value="gelan-e.pt",
)
image_size = gr.Slider(
label="Image Size",
minimum=320,
maximum=1280,
step=32,
value=640,
)
conf_threshold = gr.Slider(
label="Confidence Threshold",
minimum=0.1,
maximum=1.0,
step=0.1,
value=0.4,
)
iou_threshold = gr.Slider(
label="IoU Threshold",
minimum=0.1,
maximum=1.0,
step=0.1,
value=0.5,
)
yolov9_infer = gr.Button(value="Inference")
with gr.Column():
output_numpy = gr.Image(type="numpy",label="Output")
yolov9_infer.click(
fn=yolov9_inference,
inputs=[
img_path,
model_path,
image_size,
conf_threshold,
iou_threshold,
],
outputs=[output_numpy],
)
gr.Examples(
examples=[
[
"example-data/img-1.jpg",
"gelan-e.pt",
640,
0.4,
0.5,
],
[
"example-data/img-2.jpg",
"yolov9-c.pt",
640,
0.4,
0.5,
],
[
"example-data/img-3.jpg",
"yolov9-c.pt",
640,
0.4,
0.5,
],
[
"example-data/img-4.jpg",
"yolov9-e.pt",
640,
0.4,
0.5,
],
[
"example-data/img-5.jpg",
"gelan-e.pt",
740,
0.4,
0.5,
],
[
"example-data/img-6.jpg",
"yolov9-c.pt",
640,
0.4,
0.5,
],
[
"example-data/img-4.jpg",
"gelan-c.pt",
640,
0.4,
0.5,
],
],
fn=yolov9_inference,
inputs=[
img_path,
model_path,
image_size,
conf_threshold,
iou_threshold,
],
outputs=[output_numpy],
cache_examples=True,
)
gradio_app = gr.Blocks()
with gradio_app:
gr.HTML(
"""
<h1 style='text-align: center'>
Object Detection Using YOLO
</h1>
""")
with gr.Row():
with gr.Column():
app()
gradio_app.launch(debug=True) |