Spaces:
Build error
Build error
create main.py
Browse files
main.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Python file to serve as the frontend"""
|
2 |
+
import streamlit as st
|
3 |
+
from streamlit_chat import message
|
4 |
+
|
5 |
+
from langchain.chains import ConversationChain, LLMChain
|
6 |
+
from langchain import PromptTemplate
|
7 |
+
from langchain.llms.base import LLM
|
8 |
+
from langchain.memory import ConversationBufferWindowMemory
|
9 |
+
from typing import Optional, List, Mapping, Any
|
10 |
+
|
11 |
+
import torch
|
12 |
+
from peft import PeftModel
|
13 |
+
import transformers
|
14 |
+
|
15 |
+
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
|
16 |
+
|
17 |
+
tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")
|
18 |
+
|
19 |
+
model = LlamaForCausalLM.from_pretrained(
|
20 |
+
"decapoda-research/llama-7b-hf",
|
21 |
+
load_in_8bit=True,
|
22 |
+
torch_dtype=torch.float16,
|
23 |
+
device_map="auto",
|
24 |
+
)
|
25 |
+
model = PeftModel.from_pretrained(
|
26 |
+
model, "tloen/alpaca-lora-7b",
|
27 |
+
torch_dtype=torch.float16
|
28 |
+
)
|
29 |
+
model.eval()
|
30 |
+
|
31 |
+
device = "cpu"
|
32 |
+
def evaluate_raw_prompt(
|
33 |
+
prompt:str,
|
34 |
+
temperature=0.1,
|
35 |
+
top_p=0.75,
|
36 |
+
top_k=40,
|
37 |
+
num_beams=4,
|
38 |
+
**kwargs,
|
39 |
+
):
|
40 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
41 |
+
input_ids = inputs["input_ids"].to(device)
|
42 |
+
generation_config = GenerationConfig(
|
43 |
+
temperature=temperature,
|
44 |
+
top_p=top_p,
|
45 |
+
top_k=top_k,
|
46 |
+
num_beams=num_beams,
|
47 |
+
**kwargs,
|
48 |
+
)
|
49 |
+
with torch.no_grad():
|
50 |
+
generation_output = model.generate(
|
51 |
+
input_ids=input_ids,
|
52 |
+
generation_config=generation_config,
|
53 |
+
return_dict_in_generate=True,
|
54 |
+
output_scores=True,
|
55 |
+
max_new_tokens=256,
|
56 |
+
)
|
57 |
+
s = generation_output.sequences[0]
|
58 |
+
output = tokenizer.decode(s)
|
59 |
+
# return output
|
60 |
+
return output.split("### Response:")[1].strip()
|
61 |
+
|
62 |
+
class AlpacaLLM(LLM):
|
63 |
+
temperature: float
|
64 |
+
top_p: float
|
65 |
+
top_k: int
|
66 |
+
num_beams: int
|
67 |
+
@property
|
68 |
+
def _llm_type(self) -> str:
|
69 |
+
return "custom"
|
70 |
+
|
71 |
+
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
72 |
+
if stop is not None:
|
73 |
+
raise ValueError("stop kwargs are not permitted.")
|
74 |
+
answer = evaluate_raw_prompt(prompt,
|
75 |
+
top_p= self.top_p,
|
76 |
+
top_k= self.top_k,
|
77 |
+
num_beams= self.num_beams,
|
78 |
+
temperature= self.temperature
|
79 |
+
)
|
80 |
+
return answer
|
81 |
+
|
82 |
+
@property
|
83 |
+
def _identifying_params(self) -> Mapping[str, Any]:
|
84 |
+
"""Get the identifying parameters."""
|
85 |
+
return {
|
86 |
+
"top_p": self.top_p,
|
87 |
+
"top_k": self.top_k,
|
88 |
+
"num_beams": self.num_beams,
|
89 |
+
"temperature": self.temperature
|
90 |
+
}
|
91 |
+
|
92 |
+
|
93 |
+
template = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
94 |
+
### Instruction:
|
95 |
+
You are a chatbot, you should answer my last question very briefly. You are consistent and non repetitive.
|
96 |
+
### Chat:
|
97 |
+
{history}
|
98 |
+
Human: {human_input}
|
99 |
+
### Response:"""
|
100 |
+
|
101 |
+
prompt = PromptTemplate(
|
102 |
+
input_variables=["history","human_input"],
|
103 |
+
template=template,
|
104 |
+
)
|
105 |
+
|
106 |
+
|
107 |
+
def load_chain():
|
108 |
+
"""Logic for loading the chain you want to use should go here."""
|
109 |
+
llm = AlpacaLLM(top_p=0.75, top_k=40, num_beams=4, temperature=0.1)
|
110 |
+
# chain = ConversationChain(llm=llm)
|
111 |
+
chain = LLMChain(llm=llm, prompt=prompt, memory=ConversationBufferWindowMemory(k=2))
|
112 |
+
return chain
|
113 |
+
|
114 |
+
chain = load_chain()
|
115 |
+
|
116 |
+
# From here down is all the StreamLit UI.
|
117 |
+
st.set_page_config(page_title="LangChain Demo", page_icon=":robot:")
|
118 |
+
st.header("LangChain Demo")
|
119 |
+
|
120 |
+
if "generated" not in st.session_state:
|
121 |
+
st.session_state["generated"] = []
|
122 |
+
|
123 |
+
if "past" not in st.session_state:
|
124 |
+
st.session_state["past"] = []
|
125 |
+
|
126 |
+
|
127 |
+
def get_text():
|
128 |
+
input_text = st.text_input("Human: ", "Hello, how are you?", key="input")
|
129 |
+
return input_text
|
130 |
+
|
131 |
+
|
132 |
+
user_input = get_text()
|
133 |
+
|
134 |
+
if user_input:
|
135 |
+
output = chain.predict(human_input=user_input)
|
136 |
+
|
137 |
+
st.session_state.past.append(user_input)
|
138 |
+
st.session_state.generated.append(output)
|
139 |
+
|
140 |
+
if st.session_state["generated"]:
|
141 |
+
|
142 |
+
for i in range(len(st.session_state["generated"]) - 1, -1, -1):
|
143 |
+
message(st.session_state["generated"][i], key=str(i))
|
144 |
+
message(st.session_state["past"][i], is_user=True, key=str(i) + "_user")
|