Spaces:
Runtime error
Runtime error
from pypdf import PdfReader | |
import torch | |
import PyPDF2 | |
from io import BytesIO | |
from langchain.prompts import PromptTemplate | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.chains import RetrievalQA | |
import gradio as gr | |
import time | |
from langchain.memory import ConversationBufferMemory | |
from langchain.llms.huggingface_pipeline import HuggingFacePipeline | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, BitsAndBytesConfig | |
from langchain.document_loaders import PyPDFDirectoryLoader | |
CHUNK_SIZE = 1000 | |
# Using HuggingFaceEmbeddings with the chosen embedding model | |
embeddings = HuggingFaceEmbeddings( | |
model_name="sentence-transformers/all-mpnet-base-v2",model_kwargs = {"device": "cuda"}) | |
# transformer model configuration | |
quant_config = BitsAndBytesConfig( | |
bnb_4bit_compute_dtype=torch.bfloat16 | |
) | |
def load_llm(): | |
model_id = "Deci/DeciLM-6b-instruct" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained(model_id, | |
trust_remote_code=True, | |
device_map = "auto", | |
quantization_config=quant_config) | |
pipe = pipeline("text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
temperature=0, | |
num_beams=5, | |
no_repeat_ngram_size=4, | |
early_stopping=True, | |
max_new_tokens=50, | |
) | |
llm = HuggingFacePipeline(pipeline=pipe) | |
return llm | |
def add_text(history, text): | |
if not text: | |
raise gr.Error('Enter text') | |
history = history + [(text, '')] | |
return history | |
def upload_file(file): | |
# file_path = [file.name for file in files] | |
print(type(file)) | |
return file | |
def process_file(files): | |
# loader = PyPDFLoader(file_path= file.name) | |
# document = loader.load() | |
pdf_text = "" | |
for file in files: | |
# pdf_stream = BytesIO(file.name.content) | |
pdf = PyPDF2.PdfReader(file.name) | |
for page in pdf.pages: | |
pdf_text += page.extract_text() | |
# split into smaller chunks | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=CHUNK_SIZE, chunk_overlap=200) | |
splits = text_splitter.create_documents([pdf_text]) | |
# create a FAISS vector store db | |
# embedd the chunks and store in the db | |
vectorstore_db = FAISS.from_documents(splits, embeddings) | |
#create a custom prompt | |
custom_prompt_template = """Given the uploaded files, generate a pecise answer to the question asked by the user. | |
If you don't know the answer, just say that you don't know, don't try to make up an answer. | |
Context= {context} | |
History = {history} | |
Question= {question} | |
Helpful Answer: | |
""" | |
prompt = PromptTemplate(template=custom_prompt_template, input_variables=["question", "context", "history"]) | |
# set QA chain with memory | |
qa_chain_with_memory = RetrievalQA.from_chain_type(llm=load_llm(), | |
chain_type='stuff', | |
return_source_documents=True, | |
retriever=vectorstore_db.as_retriever(), | |
chain_type_kwargs={"verbose": True, | |
"prompt": prompt, | |
"memory": ConversationBufferMemory( | |
input_key="question", | |
memory_key="history", | |
return_messages=True) }) | |
# get answers | |
return qa_chain_with_memory | |
def generate_bot_response(history,query, btn): | |
if not btn: | |
raise gr.Error(message='Upload a PDF') | |
qa_chain_with_memory = process_file(btn) | |
bot_response = qa_chain_with_memory({"query": query}) | |
# return bot_response["result"] | |
for char in bot_response['result']: | |
history[-1][-1] += char | |
time.sleep(0.05) | |
yield history,'' | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Row(): | |
chatbot = gr.Chatbot(label="DeciLM-6b-instruct bot", value=[], elem_id='chatbot') | |
with gr.Row(): | |
file_output = gr.File(label="Your PDFs") | |
with gr.Column(): | |
btn = gr.UploadButton("π Upload a PDF(s)", file_types=[".pdf"], file_count="multiple") | |
with gr.Column(): | |
with gr.Column(): | |
txt = gr.Text(show_label=False, placeholder="Enter question") | |
with gr.Column(): | |
submit_btn = gr.Button('Ask') | |
# Event handler for uploading a PDF | |
btn.upload(fn=upload_file, inputs=[btn], outputs=[file_output]) | |
submit_btn.click( | |
fn= add_text, | |
inputs=[chatbot, txt], | |
outputs=[chatbot], | |
queue=False | |
).success( | |
fn=generate_bot_response, | |
inputs=[chatbot, txt, btn], | |
outputs=[chatbot, txt] | |
).success( | |
fn=upload_file, | |
inputs=[btn], | |
outputs=[file_output] | |
) | |
if __name__ == "__main__": | |
demo.launch() |