--- title: README emoji: 🦀 colorFrom: gray colorTo: blue sdk: static pinned: false --- # MWP-T5: Fine-tuning with Numeracy for Math Word Problem Generation This repository contains the code for the paper [Fine-tuning with Numeracy for Math Word Problem Generation]() [[PDF]()] published at IEEE T4E 2023. You can access our source code [here](https://github.com/yashichawla/mwp-t5). If you would like to cite our work, please use the following BiBTex entry: ``` ``` # Performance MWP-T5 achieves state-of-the-art performance on the MAWPS and PEN datasets. The following tables show the performance of MWP-T5 and other models on the MAWPS and PEN datasets. For more information, please refer to the paper. ## MAWPS | Model Name | BLEU-4 | ROUGE-L | METEOR | |---------------------|:---------:|:---------:|:---------:| | seq2seq-rnn | 0.153 | 0.362 | 0.175 | | seq2seq-rnn + GLoVe | 0.592 | 0.705 | 0.412 | | seq2seq-tf | 0.554 | 0.663 | 0.387 | | GPT | 0.368 | 0.538 | 0.294 | | GPT-pre | 0.504 | 0.664 | 0.391 | | GPT2-mwp2eq | 0.596 | 0.715 | 0.427 | | **MWP-T5** | **0.885** | **0.930** | **0.930** | ## PEN | Model Name | BLEU-4 | ROUGE-L | METEOR | |------------|:---------:|:---------:|:---------:| | **MWP-T5** | **0.669** | **0.768** | **0.772** | # Contact Please feel free to contact us by emailing us to report any issues or suggestions, or if you have any further questions. Contact: - [Yashi Chawla](mailto:yashi.chawla1@gmail.com) You can also contact the other maintainers listed below. - [Chakita Muttaraju](mailto:chakitapesu@gmail.com) - [Prajwal Anagani](mailto:prajwalanagani@gmail.com) - [Parimala S](mailto:parimalas2001@gmail.com) - [Gowri Srinivasa](mailto:gsrinivasa@pes.edu)