mylesmharrison's picture
init
65553b6
import json
from threading import Thread
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
##### MODEL AND TOKENIZER SETUP ######
model_id = "mylesmharrison/gpt2-moviedialog"
model = AutoModelForCausalLM.from_pretrained(model_id, from_tf=True)
tokenizer = AutoTokenizer.from_pretrained(model_id)
##### TEXT GENERATION (INFERENCE) ######
def run_generation(user_text, top_p, temperature, top_k, max_new_tokens):
# Get the model and tokenizer, and tokenize the user text.
model_inputs = tokenizer([user_text], return_tensors="pt")
# Start generation on a separate thread, so that we don't block the UI. The text is pulled from the streamer
# in the main thread. Adds timeout to the streamer to handle exceptions in the generation thread.
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
model_inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
temperature=float(temperature),
top_k=top_k
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
# Pull the generated text from the streamer, and update the model output.
model_output = ""
for new_text in streamer:
model_output += new_text
yield model_output
return model_output
##### HELPER FUNCTION AND TEXT DATA ######
def reset_textbox():
return gr.update(value='')
# Read in the text data for examples
with open("gradio_data.json", "r") as f:
gr_data = json.loads(f.read())
# Read in the markdown data for the header
with open("README.md", "r") as f:
desc = ''.join(f.readlines()[11:])
theme = gr.themes.Base()
##### UI RENDER ######
with gr.Blocks(theme=theme) as demo:
with gr.Row():
with gr.Column():
### DESCRIPTION
gr.Markdown(desc)
with gr.Row():
with gr.Column():
# INPUT FIELD
user_text = gr.Textbox(
placeholder="JOHN: I love you.",
label="User input",
scale=4,
lines=10
)
# SUBMIT BUTTON
with gr.Row():
with gr.Column():
button_submit = gr.Button(value="Submit")
with gr.Column():
stop = gr.Button(value="Stop")
### TEXT EXAMPLES
gr.Examples(gr_data['examples'],[user_text])
with gr.Column():
with gr.Row(scale=4):
model_output = gr.Textbox(label="Model output", lines=10, interactive=False)
with gr.Row(scale=1):
### INFERENCE CONTROLS
max_new_tokens = gr.Slider(
minimum=1, maximum=500, value=150, step=10, interactive=True, label="Max Tokens",
)
top_p = gr.Slider(
minimum=0.05, maximum=1.0, value=0.95, step=0.05, interactive=True, label="Top-p",
)
top_k = gr.Slider(
minimum=1, maximum=50, value=20, step=1, interactive=True, label="Top-k",
)
temperature = gr.Slider(
minimum=0.1, maximum=5.0, value=1.1, step=0.1, interactive=True, label="Temperature",
)
# RUN
text_event = user_text.submit(run_generation, [user_text, top_p, temperature, top_k, max_new_tokens], model_output)
button_event = button_submit.click(run_generation, [user_text, top_p, temperature, top_k, max_new_tokens], model_output)
stop.click(fn=None, inputs=None, outputs=None, cancels=[text_event, button_event])
demo.queue(max_size=32).launch(enable_queue=True)