|
import os |
|
import numpy as np |
|
import io |
|
import requests |
|
from io import BytesIO |
|
os.system("pip install gradio==4.37.2") |
|
os.system("pip install opencv-python") |
|
import cv2 |
|
import gradio as gr |
|
import random |
|
import warnings |
|
import spaces |
|
from PIL import Image |
|
from S2I import Sketch2ImageController, css, scripts |
|
|
|
|
|
dark_mode_theme = """ |
|
function refresh() { |
|
const url = new URL(window.location); |
|
|
|
if (url.searchParams.get('__theme') !== 'dark') { |
|
url.searchParams.set('__theme', 'dark'); |
|
window.location.href = url.href; |
|
} |
|
} |
|
""" |
|
|
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" |
|
warnings.filterwarnings("ignore") |
|
controller = Sketch2ImageController(gr) |
|
|
|
|
|
def run_gpu(options, img_init, text_init, prompt_template_init, style_name_init, seeds_init, val_r_values_init, faster_init, model_name_init, clear_flag): |
|
return controller.artwork(options, img_init, text_init, prompt_template_init, style_name_init, seeds_init, val_r_values_init, faster_init, model_name_init, clear_flag) |
|
|
|
def run_cpu(options, img_init, text_init, prompt_template_init, style_name_init, seeds_init, val_r_values_init, faster_init, model_name_init, clear_flag): |
|
return controller.artwork(options, img_init, text_init, prompt_template_init, style_name_init, seeds_init, val_r_values_init, faster_init, model_name_init, clear_flag) |
|
|
|
def get_dark_mode(): |
|
return """ |
|
() => { |
|
document.body.classList.toggle('dark'); |
|
} |
|
""" |
|
|
|
def clear_session(): |
|
return gr.update(value=None), gr.update(value=None) |
|
|
|
|
|
def assign_gpu(options, img_init, text_init, prompt_template_init, style_name_init, seeds_init, val_r_values_init, faster_init, model_name_init, clear_flag): |
|
|
|
if options == 'GPU': |
|
decorated_run = spaces.GPU(run_gpu) |
|
return decorated_run(options, img_init, text_init, prompt_template_init, style_name_init, seeds_init, val_r_values_init, faster_init, model_name_init, clear_flag) |
|
else: |
|
return run_cpu(options, img_init, text_init, prompt_template_init, style_name_init, seeds_init, val_r_values_init, faster_init, model_name_init, clear_flag) |
|
|
|
def read_temp_file(temp_file_wrapper): |
|
name = temp_file_wrapper.name |
|
with open(temp_file_wrapper.name, 'rb') as f: |
|
|
|
file_content = f.read() |
|
return file_content, name |
|
|
|
def convert_to_pencil_sketch(image): |
|
if image is None: |
|
raise ValueError(f"Image at path {image} could not be loaded.") |
|
|
|
|
|
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) |
|
|
|
|
|
inverted_image = 255 - gray_image |
|
|
|
|
|
blurred = cv2.GaussianBlur(inverted_image, (25, 25), 0) |
|
inverted_blurred = 255 - blurred |
|
|
|
|
|
pencil_sketch = cv2.divide(gray_image, inverted_blurred, scale=256.0) |
|
|
|
return pencil_sketch |
|
|
|
def get_meta_from_image(input_img, type_image): |
|
if input_img is None: |
|
return gr.update(value=None) |
|
|
|
img = Image.open(BytesIO(requests.get(input_img).content)).convert('RGB') |
|
|
|
|
|
img_np = np.array(img) |
|
|
|
if type_image == 'RGB': |
|
sketch = convert_to_pencil_sketch(img_np) |
|
processed_img = 255 - sketch |
|
elif type_image == 'SKETCH': |
|
processed_img = 255 - img_np |
|
|
|
|
|
img_pil = Image.fromarray(processed_img.astype('uint8')) |
|
|
|
return img_pil |
|
|
|
|
|
with gr.Blocks(css=css, theme="NoCrypt/miku@1.2.1") as demo: |
|
gr.HTML( |
|
""" |
|
<!DOCTYPE html> |
|
<html lang="en"> |
|
<head> |
|
<meta charset="UTF-8"> |
|
<meta name="viewport" content="width=device-width, initial-scale=1.0"> |
|
<title>S2I-Artwork Animation</title> |
|
<style> |
|
|
|
@keyframes blinkCursor { |
|
from { border-right-color: rgba(255, 255, 255, 0.75); } |
|
to { border-right-color: transparent; } |
|
} |
|
|
|
|
|
|
|
@keyframes fadeIn { |
|
0% { opacity: 0; transform: translateY(-10px); } |
|
100% { opacity: 1; transform: translateY(0); } |
|
} |
|
|
|
@keyframes bounce { |
|
0%, 20%, 50%, 80%, 100% { |
|
transform: translateY(0); |
|
} |
|
40% { |
|
transform: translateY(-10px); |
|
} |
|
60% { |
|
transform: translateY(-5px); |
|
} |
|
} |
|
.typewriter h1 { |
|
overflow: hidden; |
|
border-right: .15em solid rgba(255, 255, 255, 0.75); |
|
white-space: nowrap; |
|
margin: 0 auto; |
|
letter-spacing: .15em; |
|
animation: |
|
zoomInOut 4s infinite; |
|
} |
|
.animated-heading { |
|
animation: fadeIn 2s ease-in-out; |
|
} |
|
|
|
.animated-link { |
|
display: inline-block; |
|
animation: bounce 3s infinite; |
|
} |
|
</style> |
|
</head> |
|
<body> |
|
<div> |
|
<div class="typewriter"> |
|
<h1 style="display: flex; align-items: center; justify-content: center; margin-bottom: 10px; text-align: center;"> |
|
<img src="https://imgur.com/H2SLps2.png" alt="icon" style="margin-left: 10px; height: 30px;"> |
|
S2I-Artwork |
|
<img src="https://imgur.com/cNMKSAy.png" alt="icon" style="margin-left: 10px; height: 30px;">: |
|
Personalized Sketch-to-Art 🧨 Diffusion Models |
|
<img src="https://imgur.com/yDnDd1p.png" alt="icon" style="margin-left: 10px; height: 30px;"> |
|
</h1> |
|
</div> |
|
<h3 class="animated-heading" style="text-align: center; margin-bottom: 10px;">Authors: Vo Nguyen An Tin, Nguyen Thiet Su</h3> |
|
<h4 class="animated-heading" style="margin-bottom: 10px;">*This project is the fine-tuning task with LorA on large datasets included: COCO-2017, LHQ, Danbooru, LandScape and Mid-Journey V6</h4> |
|
<h4 class="animated-heading" style="margin-bottom: 10px;">* We public 2 sketch2image-models-lora training on 30K and 60K steps with skip-connection and Transformers Super-Resolution variables</h4> |
|
<h4 class="animated-heading" style="margin-bottom: 10px;">* The inference and demo time of model is faster, you can slowly in the first runtime, but after that, the time process over 1.5 ~ 2s</h4> |
|
<h4 class="animated-heading" style="margin-bottom: 10px;">* View the full code project: |
|
<a class="animated-link" href="https://github.com/aihacker111/S2I-Artwork-Sketch-to-Image/" target="_blank">GitHub Repository</a> |
|
</h4> |
|
<h4 class="animated-heading" style="margin-bottom: 10px;"> |
|
<a class="animated-link" href="https://github.com/aihacker111/S2I-Artwork-Sketch-to-Image/" target="_blank"> |
|
<img src="https://cdn.buymeacoffee.com/buttons/default-orange.png" alt="Buy Me A Coffee" height="41" width="100"> |
|
</a> |
|
</h4> |
|
</div> |
|
</body> |
|
</html> |
|
""" |
|
) |
|
with gr.Row(elem_id="main_row"): |
|
with gr.Column(elem_id="column_input"): |
|
gr.Markdown("## SKETCH", elem_id="input_header") |
|
image = gr.Sketchpad( |
|
type="pil", |
|
height=512, |
|
width=512, |
|
min_width=512, |
|
image_mode="RGBA", |
|
show_label=False, |
|
mirror_webcam=False, |
|
show_download_button=True, |
|
elem_id='input_image', |
|
brush=gr.Brush(colors=["#000000"], color_mode="fixed", default_size=4), |
|
canvas_size=(1024, 1024), |
|
layers=False |
|
) |
|
|
|
url_image = gr.Textbox(label="Image URLS", value="") |
|
|
|
download_sketch = gr.Button( |
|
"Download sketch", scale=1, elem_id="download_sketch" |
|
) |
|
|
|
with gr.Column(elem_id="column_output"): |
|
gr.Markdown("## IMAGE GENERATE", elem_id="output_header") |
|
result = gr.Image( |
|
label="Result", |
|
height=440, |
|
width=440, |
|
elem_id="output_image", |
|
show_label=False, |
|
show_download_button=True, |
|
) |
|
with gr.Group(): |
|
with gr.Row(): |
|
run_button = gr.Button("Generate 🪄", min_width=5, variant='primary') |
|
randomize_seed = gr.Button(value='\U0001F3B2', variant='primary') |
|
clear_button = gr.Button("Reset Sketch Session", min_width=10, variant='primary') |
|
prompt = gr.Textbox(label="Personalized Text", value="", show_label=True) |
|
with gr.Accordion("S2I Advances Option", open=True): |
|
with gr.Row(): |
|
ui_mode = gr.Radio( |
|
choices=["Light Mode", "Dark Mode"], |
|
value="Light Mode", |
|
label="Switch Light/Dark Mode UI", |
|
interactive=True) |
|
type_image = gr.Radio( |
|
choices=["RGB", "SKETCH"], |
|
value="SKETCH", |
|
label="Type of Image (Color Image or Sketch Image)", |
|
interactive=True) |
|
input_type = gr.Radio( |
|
choices=["live-sketch", "url-sketch"], |
|
value="live-sketch", |
|
label="Type Sketch2Image models", |
|
interactive=True) |
|
style = gr.Dropdown( |
|
label="Style", |
|
choices=controller.STYLE_NAMES, |
|
value=controller.DEFAULT_STYLE_NAME, |
|
scale=1, |
|
) |
|
prompt_temp = gr.Textbox( |
|
label="Prompt Style Template", |
|
value=controller.styles[controller.DEFAULT_STYLE_NAME], |
|
scale=2, |
|
max_lines=1, |
|
) |
|
seed = gr.Textbox(label="Seed", value='42', scale=1, min_width=50) |
|
zero_gpu_options = gr.Radio( |
|
choices=["GPU", "CPU"], |
|
value="GPU", |
|
label="GPU & CPU Options Spaces", |
|
interactive=True) |
|
half_model = gr.Radio( |
|
choices=["float32", "float16"], |
|
value="float16", |
|
label="Demo Speed", |
|
interactive=True) |
|
model_options = gr.Radio( |
|
choices=["350k", "350k-adapter"], |
|
value="350k-adapter", |
|
label="Type Sketch2Image models", |
|
interactive=True) |
|
|
|
val_r = gr.Slider( |
|
label="Sketch guidance: ", |
|
show_label=True, |
|
minimum=0, |
|
maximum=1, |
|
value=0.4, |
|
step=0.01, |
|
scale=3, |
|
) |
|
|
|
demo.load(None, None, None, js=scripts) |
|
ui_mode.change(None, [], [], js=get_dark_mode()) |
|
randomize_seed.click( |
|
lambda x: random.randint(0, controller.MAX_SEED), |
|
inputs=[], |
|
outputs=seed, |
|
queue=False, |
|
api_name=False, |
|
) |
|
inputs = [zero_gpu_options, image, prompt, prompt_temp, style, seed, val_r, half_model, model_options, input_type] |
|
outputs = [result, download_sketch] |
|
prompt.submit(fn=assign_gpu, inputs=inputs, outputs=outputs, api_name=False) |
|
|
|
|
|
style.change( |
|
lambda x: controller.styles[x], |
|
inputs=[style], |
|
outputs=[prompt_temp], |
|
queue=False, |
|
api_name=False, |
|
).then( |
|
fn=assign_gpu, |
|
inputs=inputs, |
|
outputs=outputs, |
|
api_name=False, |
|
) |
|
clear_button.click(fn=clear_session, inputs=[], outputs=[image, result]) |
|
val_r.change(assign_gpu, inputs=inputs, outputs=outputs, queue=False, api_name=False) |
|
run_button.click(fn=assign_gpu, inputs=inputs, outputs=outputs, api_name=False) |
|
image.change(assign_gpu, inputs=inputs, outputs=outputs, queue=False, api_name=False) |
|
url_image.submit(fn=get_meta_from_image, inputs=[url_image, type_image], outputs=[image]) |
|
url_image.change(fn=get_meta_from_image, inputs=[url_image, type_image], outputs=[image]) |
|
if __name__ == '__main__': |
|
demo.queue() |
|
demo.launch(debug=True, share=False) |
|
|