|
from typing import Any, Dict, List, Optional, Tuple |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from segment_anything import SamAutomaticMaskGenerator |
|
from segment_anything.modeling import Sam |
|
from segment_anything.utils.amg import (MaskData, area_from_rle, |
|
batched_mask_to_box, box_xyxy_to_xywh, |
|
batch_iterator, |
|
uncrop_boxes_xyxy, uncrop_points, |
|
calculate_stability_score, |
|
coco_encode_rle, generate_crop_boxes, |
|
is_box_near_crop_edge, |
|
mask_to_rle_pytorch, rle_to_mask, |
|
uncrop_masks) |
|
from torchvision.ops.boxes import batched_nms, box_area |
|
|
|
|
|
def batched_mask_to_prob(masks: torch.Tensor) -> torch.Tensor: |
|
""" |
|
For implementation, see the following issue comment: |
|
|
|
"To get the probability map for a mask, |
|
we simply do element-wise sigmoid over the logits." |
|
URL: https://github.com/facebookresearch/segment-anything/issues/226 |
|
|
|
Args: |
|
masks: Tensor of shape [B, H, W] representing batch of binary masks. |
|
|
|
Returns: |
|
Tensor of shape [B, H, W] representing batch of probability maps. |
|
""" |
|
probs = torch.sigmoid(masks).to(masks.device) |
|
return probs |
|
|
|
|
|
def batched_sobel_filter(probs: torch.Tensor, masks: torch.Tensor, bzp: int |
|
) -> torch.Tensor: |
|
""" |
|
For implementation, see section D.2 of the paper: |
|
|
|
"we apply a Sobel filter to the remaining masks' unthresholded probability |
|
maps and set values to zero if they do not intersect with the outer |
|
boundary pixels of a mask." |
|
URL: https://arxiv.org/abs/2304.02643 |
|
|
|
Args: |
|
probs: Tensor of shape [B, H, W] representing batch of probability maps. |
|
masks: Tensor of shape [B, H, W] representing batch of binary masks. |
|
|
|
Returns: |
|
Tensor of shape [B, H, W] with filtered probability maps. |
|
""" |
|
|
|
|
|
probs = probs.unsqueeze(1) |
|
|
|
|
|
sobel_filter_x = torch.tensor([[[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]], |
|
dtype=torch.float32 |
|
).to(probs.device).unsqueeze(0) |
|
sobel_filter_y = torch.tensor([[[-1, -2, -1], [0, 0, 0], [1, 2, 1]]], |
|
dtype=torch.float32 |
|
).to(probs.device).unsqueeze(0) |
|
|
|
|
|
G_x = F.conv2d(probs, sobel_filter_x, padding=1) |
|
G_y = F.conv2d(probs, sobel_filter_y, padding=1) |
|
|
|
|
|
probs = torch.sqrt(G_x ** 2 + G_y ** 2) |
|
|
|
|
|
for i in range(probs.shape[0]): |
|
|
|
mask = masks[i].float() |
|
|
|
G_x = F.conv2d(mask[None, None], sobel_filter_x, padding=1) |
|
G_y = F.conv2d(mask[None, None], sobel_filter_y, padding=1) |
|
edge = torch.sqrt(G_x ** 2 + G_y ** 2) |
|
outer_boundary = (edge > 0).float() |
|
|
|
|
|
probs[i, 0] = probs[i, 0] * outer_boundary |
|
|
|
|
|
|
|
|
|
if bzp > 0: |
|
probs[i, 0, 0:bzp, :] = 0 |
|
probs[i, 0, -bzp:, :] = 0 |
|
probs[i, 0, :, 0:bzp] = 0 |
|
probs[i, 0, :, -bzp:] = 0 |
|
|
|
|
|
probs = probs.squeeze(1) |
|
|
|
return probs |
|
|
|
|
|
class SamAutomaticMaskAndProbabilityGenerator(SamAutomaticMaskGenerator): |
|
def __init__( |
|
self, |
|
model: Sam, |
|
points_per_side: Optional[int] = 16, |
|
points_per_batch: int = 64, |
|
pred_iou_thresh: float = 0.88, |
|
stability_score_thresh: float = 0.95, |
|
stability_score_offset: float = 1.0, |
|
box_nms_thresh: float = 0.7, |
|
crop_n_layers: int = 0, |
|
crop_nms_thresh: float = 0.7, |
|
crop_overlap_ratio: float = 512 / 1500, |
|
crop_n_points_downscale_factor: int = 1, |
|
point_grids: Optional[List[np.ndarray]] = None, |
|
min_mask_region_area: int = 0, |
|
output_mode: str = "binary_mask", |
|
nms_threshold: float = 0.7, |
|
bzp: int = 0, |
|
pred_iou_thresh_filtering=False, |
|
stability_score_thresh_filtering=False, |
|
) -> None: |
|
""" |
|
Using a SAM model, generates masks for the entire image. |
|
Generates a grid of point prompts over the image, then filters |
|
low quality and duplicate masks. The default settings are chosen |
|
for SAM with a ViT-H backbone. |
|
|
|
Arguments: |
|
model (Sam): The SAM model to use for mask prediction. |
|
points_per_side (int or None): The number of points to be sampled |
|
along one side of the image. The total number of points is |
|
points_per_side**2. If None, 'point_grids' must provide explicit |
|
point sampling. |
|
points_per_batch (int): Sets the number of points run simultaneously |
|
by the model. Higher numbers may be faster but use more GPU memory. |
|
pred_iou_thresh (float): A filtering threshold in [0,1], using the |
|
model's predicted mask quality. |
|
stability_score_thresh (float): A filtering threshold in [0,1], using |
|
the stability of the mask under changes to the cutoff used to binarize |
|
the model's mask predictions. |
|
stability_score_offset (float): The amount to shift the cutoff when |
|
calculated the stability score. |
|
box_nms_thresh (float): The box IoU cutoff used by non-maximal |
|
suppression to filter duplicate masks. |
|
crop_n_layers (int): If >0, mask prediction will be run again on |
|
crops of the image. Sets the number of layers to run, where each |
|
layer has 2**i_layer number of image crops. |
|
crop_nms_thresh (float): The box IoU cutoff used by non-maximal |
|
suppression to filter duplicate masks between different crops. |
|
crop_overlap_ratio (float): Sets the degree to which crops overlap. |
|
In the first crop layer, crops will overlap by this fraction of |
|
the image length. Later layers with more crops scale down this overlap. |
|
crop_n_points_downscale_factor (int): The number of points-per-side |
|
sampled in layer n is scaled down by crop_n_points_downscale_factor**n. |
|
point_grids (list(np.ndarray) or None): A list over explicit grids |
|
of points used for sampling, normalized to [0,1]. The nth grid in the |
|
list is used in the nth crop layer. Exclusive with points_per_side. |
|
min_mask_region_area (int): If >0, postprocessing will be applied |
|
to remove disconnected regions and holes in masks with area smaller |
|
than min_mask_region_area. Requires opencv. |
|
output_mode (str): The form masks are returned in. Can be 'binary_mask', |
|
'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools. |
|
For large resolutions, 'binary_mask' may consume large amounts of |
|
memory. |
|
nms_threshold (float): The IoU threshold used for non-maximal suppression |
|
""" |
|
super().__init__( |
|
model, |
|
points_per_side, |
|
points_per_batch, |
|
pred_iou_thresh, |
|
stability_score_thresh, |
|
stability_score_offset, |
|
box_nms_thresh, |
|
crop_n_layers, |
|
crop_nms_thresh, |
|
crop_overlap_ratio, |
|
crop_n_points_downscale_factor, |
|
point_grids, |
|
min_mask_region_area, |
|
output_mode, |
|
) |
|
self.nms_threshold = nms_threshold |
|
self.bzp = bzp |
|
self.pred_iou_thresh_filtering = pred_iou_thresh_filtering |
|
self.stability_score_thresh_filtering = \ |
|
stability_score_thresh_filtering |
|
|
|
@torch.no_grad() |
|
def generate(self, image: np.ndarray) -> List[Dict[str, Any]]: |
|
""" |
|
Generates masks for the given image. |
|
|
|
Arguments: |
|
image (np.ndarray): The image to generate masks for, in HWC uint8 format. |
|
|
|
Returns: |
|
list(dict(str, any)): A list over records for masks. Each record is |
|
a dict containing the following keys: |
|
segmentation (dict(str, any) or np.ndarray): The mask. If |
|
output_mode='binary_mask', is an array of shape HW. Otherwise, |
|
is a dictionary containing the RLE. |
|
bbox (list(float)): The box around the mask, in XYWH format. |
|
area (int): The area in pixels of the mask. |
|
predicted_iou (float): The model's own prediction of the mask's |
|
quality. This is filtered by the pred_iou_thresh parameter. |
|
point_coords (list(list(float))): The point coordinates input |
|
to the model to generate this mask. |
|
stability_score (float): A measure of the mask's quality. This |
|
is filtered on using the stability_score_thresh parameter. |
|
crop_box (list(float)): The crop of the image used to generate |
|
the mask, given in XYWH format. |
|
""" |
|
|
|
|
|
mask_data = self._generate_masks(image) |
|
|
|
|
|
if self.min_mask_region_area > 0: |
|
mask_data = self.postprocess_small_regions( |
|
mask_data, |
|
self.min_mask_region_area, |
|
max(self.box_nms_thresh, self.crop_nms_thresh), |
|
) |
|
|
|
|
|
if self.output_mode == "coco_rle": |
|
mask_data["segmentations"] = [coco_encode_rle(rle) for rle in mask_data["rles"]] |
|
elif self.output_mode == "binary_mask": |
|
mask_data["segmentations"] = [rle_to_mask(rle) for rle in mask_data["rles"]] |
|
else: |
|
mask_data["segmentations"] = mask_data["rles"] |
|
|
|
|
|
curr_anns = [] |
|
for idx in range(len(mask_data["segmentations"])): |
|
ann = { |
|
"segmentation": mask_data["segmentations"][idx], |
|
"area": area_from_rle(mask_data["rles"][idx]), |
|
"bbox": box_xyxy_to_xywh(mask_data["boxes"][idx]).tolist(), |
|
"predicted_iou": mask_data["iou_preds"][idx].item(), |
|
"point_coords": [mask_data["points"][idx].tolist()], |
|
"stability_score": mask_data["stability_score"][idx].item(), |
|
"crop_box": box_xyxy_to_xywh(mask_data["crop_boxes"][idx]).tolist(), |
|
"prob": mask_data["probs"][idx], |
|
} |
|
curr_anns.append(ann) |
|
|
|
return curr_anns |
|
|
|
def _process_crop( |
|
self, |
|
image: np.ndarray, |
|
crop_box: List[int], |
|
crop_layer_idx: int, |
|
orig_size: Tuple[int, ...], |
|
) -> MaskData: |
|
|
|
x0, y0, x1, y1 = crop_box |
|
cropped_im = image[y0:y1, x0:x1, :] |
|
cropped_im_size = cropped_im.shape[:2] |
|
self.predictor.set_image(cropped_im) |
|
|
|
|
|
points_scale = np.array(cropped_im_size)[None, ::-1] |
|
points_for_image = self.point_grids[crop_layer_idx] * points_scale |
|
|
|
|
|
data = MaskData() |
|
for (points,) in batch_iterator(self.points_per_batch, points_for_image): |
|
batch_data = self._process_batch(points, cropped_im_size, crop_box, orig_size) |
|
data.cat(batch_data) |
|
del batch_data |
|
self.predictor.reset_image() |
|
|
|
|
|
keep_by_nms = batched_nms( |
|
data["boxes"].float(), |
|
data["iou_preds"], |
|
torch.zeros_like(data["boxes"][:, 0]), |
|
iou_threshold=self.box_nms_thresh, |
|
) |
|
data.filter(keep_by_nms) |
|
|
|
|
|
data["boxes"] = uncrop_boxes_xyxy(data["boxes"], crop_box) |
|
data["points"] = uncrop_points(data["points"], crop_box) |
|
data["crop_boxes"] = torch.tensor([crop_box for _ in range(len(data["rles"]))]) |
|
|
|
padded_probs = torch.zeros((data["probs"].shape[0], *orig_size), |
|
dtype=torch.float32, |
|
device=data["probs"].device) |
|
padded_probs[:, y0:y1, x0:x1] = data["probs"] |
|
data["probs"] = padded_probs |
|
|
|
return data |
|
|
|
def _generate_masks(self, image: np.ndarray) -> MaskData: |
|
orig_size = image.shape[:2] |
|
crop_boxes, layer_idxs = generate_crop_boxes( |
|
orig_size, self.crop_n_layers, self.crop_overlap_ratio |
|
) |
|
|
|
|
|
data = MaskData() |
|
for crop_box, layer_idx in zip(crop_boxes, layer_idxs): |
|
crop_data = self._process_crop(image, crop_box, layer_idx, orig_size) |
|
data.cat(crop_data) |
|
|
|
|
|
if len(crop_boxes) > 1: |
|
|
|
scores = 1 / box_area(data["crop_boxes"]) |
|
scores = scores.to(data["boxes"].device) |
|
keep_by_nms = batched_nms( |
|
data["boxes"].float(), |
|
scores, |
|
torch.zeros_like(data["boxes"][:, 0]), |
|
iou_threshold=self.crop_nms_thresh, |
|
) |
|
data.filter(keep_by_nms) |
|
|
|
data.to_numpy() |
|
return data |
|
|
|
def _process_batch( |
|
self, |
|
points: np.ndarray, |
|
im_size: Tuple[int, ...], |
|
crop_box: List[int], |
|
orig_size: Tuple[int, ...], |
|
) -> MaskData: |
|
orig_h, orig_w = orig_size |
|
|
|
|
|
transformed_points = self.predictor.transform.apply_coords(points, im_size) |
|
in_points = torch.as_tensor(transformed_points, device=self.predictor.device) |
|
in_labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device) |
|
masks, iou_preds, _ = self.predictor.predict_torch( |
|
in_points[:, None, :], |
|
in_labels[:, None], |
|
multimask_output=True, |
|
return_logits=True, |
|
) |
|
|
|
|
|
data = MaskData( |
|
masks=masks.flatten(0, 1), |
|
iou_preds=iou_preds.flatten(0, 1), |
|
points=torch.as_tensor(points.repeat(masks.shape[1], axis=0)), |
|
) |
|
del masks |
|
|
|
if self.pred_iou_thresh_filtering and self.pred_iou_thresh > 0.0: |
|
keep_mask = data["iou_preds"] > self.pred_iou_thresh |
|
data.filter(keep_mask) |
|
|
|
|
|
data["stability_score"] = calculate_stability_score( |
|
data["masks"], self.predictor.model.mask_threshold, self.stability_score_offset |
|
) |
|
|
|
if self.stability_score_thresh_filtering and \ |
|
self.stability_score_thresh > 0.0: |
|
keep_mask = data["stability_score"] >= self.stability_score_thresh |
|
data.filter(keep_mask) |
|
|
|
|
|
data["probs"] = batched_mask_to_prob(data["masks"]) |
|
data["masks"] = data["masks"] > self.predictor.model.mask_threshold |
|
data["boxes"] = batched_mask_to_box(data["masks"]) |
|
|
|
|
|
keep_mask = ~is_box_near_crop_edge(data["boxes"], crop_box, [0, 0, orig_w, orig_h]) |
|
if not torch.all(keep_mask): |
|
data.filter(keep_mask) |
|
|
|
|
|
if self.nms_threshold > 0.0: |
|
keep_mask = batched_nms( |
|
data["boxes"].float(), |
|
data["iou_preds"], |
|
torch.zeros_like(data["boxes"][:, 0]), |
|
iou_threshold=self.nms_threshold, |
|
) |
|
data.filter(keep_mask) |
|
|
|
|
|
data["probs"] = batched_sobel_filter(data["probs"], data["masks"], |
|
bzp=self.bzp) |
|
|
|
|
|
|
|
|
|
|
|
data["masks"] = uncrop_masks(data["masks"], crop_box, orig_h, orig_w) |
|
data["rles"] = mask_to_rle_pytorch(data["masks"]) |
|
del data["masks"] |
|
|
|
return data |