myn0908's picture
enhance prompModule
8811405
raw
history blame
15.7 kB
import os
import numpy as np
import base64
import io
import requests
from io import BytesIO
os.system("pip install gradio==4.37.2")
os.system("pip install opencv-python")
import cv2
import gradio as gr
import random
import warnings
import spaces
from PIL import Image
from S2I import Sketch2ImageController, css, scripts
dark_mode_theme = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'dark') {
url.searchParams.set('__theme', 'dark');
window.location.href = url.href;
}
}
"""
os.environ["TOKENIZERS_PARALLELISM"] = "false"
warnings.filterwarnings("ignore")
controller = Sketch2ImageController(gr)
clear_flag = False
def run_gpu(options, img_init, text_init, prompt_template_init, style_name_init, seeds_init, val_r_values_init, faster_init, model_name_init, input_type):
return controller.artwork(options, img_init, text_init, prompt_template_init, style_name_init, seeds_init, val_r_values_init, faster_init, model_name_init, input_type)
def run_cpu(options, img_init, text_init, prompt_template_init, style_name_init, seeds_init, val_r_values_init, faster_init, model_name_init, input_type):
return controller.artwork(options, img_init, text_init, prompt_template_init, style_name_init, seeds_init, val_r_values_init, faster_init, model_name_init, input_type)
def get_dark_mode():
return """
() => {
document.body.classList.toggle('dark');
}
"""
def pil_image_to_data_uri(img, format="PNG"):
buffered = BytesIO()
img.save(buffered, format=format)
img_str = base64.b64encode(buffered.getvalue()).decode()
return f"data:image/{format.lower()};base64,{img_str}"
def clear_session(image):
global clear_flag
clear_flag = True
return gr.update(value=None), gr.update(value=None)
def assign_gpu(options, img_init, text_init, prompt_template_init, style_name_init, seeds_init, val_r_values_init, faster_init, model_name_init, input_type):
global clear_flag
if clear_flag:
clear_flag = False # Reset the flag after handling the clear action
return gr.update(value=None)
else:
if options == 'GPU':
decorated_run = spaces.GPU(run_gpu)
return decorated_run(options, img_init, text_init, prompt_template_init, style_name_init, seeds_init, val_r_values_init, faster_init, model_name_init, input_type)
else:
return run_cpu(options, img_init, text_init, prompt_template_init, style_name_init, seeds_init, val_r_values_init, faster_init, model_name_init, input_type)
def read_temp_file(temp_file_wrapper):
name = temp_file_wrapper.name
with open(temp_file_wrapper.name, 'rb') as f:
# Read the content of the file
file_content = f.read()
return file_content, name
def convert_to_pencil_sketch(image):
if image is None:
raise ValueError(f"Image at path {image} could not be loaded.")
# Converting it into grayscale
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Inverting the image
inverted_image = 255 - gray_image
# Blurring the image
blurred = cv2.GaussianBlur(inverted_image, (25, 25), 0)
inverted_blurred = 255 - blurred
# Creating the pencil sketch
pencil_sketch = cv2.divide(gray_image, inverted_blurred, scale=256.0)
return pencil_sketch
def get_meta_from_image(input_img, type_image):
global clear_flag
if clear_flag:
clear_flag = False # Reset the flag after handling the clear action
return gr.update(value=None) # Ensure nothing is processed if clear flag is true
else:
if input_img is None:
return gr.update(value=None)
img = Image.open(BytesIO(requests.get(input_img).content)).convert('RGB')
# Read the image using Pillow
img_np = np.array(img)
if type_image == 'RGB':
sketch = convert_to_pencil_sketch(img_np)
processed_img = 255 - sketch
elif type_image == 'SKETCH':
processed_img = 255 - img_np
# Convert the processed image back to PIL Image
img_pil = Image.fromarray(processed_img.astype('uint8'))
return img_pil, 'URL'
with gr.Blocks(css=css, theme="NoCrypt/miku@1.2.1") as demo:
gr.HTML(
"""
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>S2I-Artwork Animation</title>
<style>
@keyframes blinkCursor {
from { border-right-color: rgba(255, 255, 255, 0.75); }
to { border-right-color: transparent; }
}
@keyframes fadeIn {
0% { opacity: 0; transform: translateY(-10px); }
100% { opacity: 1; transform: translateY(0); }
}
@keyframes bounce {
0%, 20%, 50%, 80%, 100% {
transform: translateY(0);
}
40% {
transform: translateY(-10px);
}
60% {
transform: translateY(-5px);
}
}
.typewriter h1 {
overflow: hidden;
border-right: .15em solid rgba(255, 255, 255, 0.75);
white-space: nowrap;
margin: 0 auto;
letter-spacing: .15em;
animation:
zoomInOut 4s infinite;
}
.animated-heading {
animation: fadeIn 2s ease-in-out;
}
.animated-link {
display: inline-block;
animation: bounce 3s infinite;
}
</style>
</head>
<body>
<div>
<div class="typewriter">
<h1 style="display: flex; align-items: center; justify-content: center; margin-bottom: 10px; text-align: center;">
<img src="https://imgur.com/H2SLps2.png" alt="icon" style="margin-left: 10px; height: 30px;">
S2I-Artwork
<img src="https://imgur.com/cNMKSAy.png" alt="icon" style="margin-left: 10px; height: 30px;">:
Personalized Sketch-to-Art 🧨 Diffusion Models
<img src="https://imgur.com/yDnDd1p.png" alt="icon" style="margin-left: 10px; height: 30px;">
</h1>
</div>
<h3 class="animated-heading" style="text-align: center; margin-bottom: 10px;">Authors: Vo Nguyen An Tin, Nguyen Thiet Su</h3>
<h4 class="animated-heading" style="margin-bottom: 10px;">*This project is the fine-tuning task with LorA on large datasets included: COCO-2017, LHQ, Danbooru, LandScape and Mid-Journey V6</h4>
<h4 class="animated-heading" style="margin-bottom: 10px;">* We public 2 sketch2image-models-lora training on 30K and 60K steps with skip-connection and Transformers Super-Resolution variables</h4>
<h4 class="animated-heading" style="margin-bottom: 10px;">* The inference and demo time of model is faster, you can slowly in the first runtime, but after that, the time process over 1.5 ~ 2s</h4>
<h4 class="animated-heading" style="margin-bottom: 10px;">* View the full code project:
<a class="animated-link" href="https://github.com/aihacker111/S2I-Artwork-Sketch-to-Image/" target="_blank">GitHub Repository</a>
</h4>
<h4 class="animated-heading" style="margin-bottom: 10px;">
<a class="animated-link" href="https://github.com/aihacker111/S2I-Artwork-Sketch-to-Image/" target="_blank">
<img src="https://cdn.buymeacoffee.com/buttons/default-orange.png" alt="Buy Me A Coffee" height="41" width="100">
</a>
</h4>
</div>
</body>
</html>
"""
)
with gr.Row(elem_id="main_row"):
with gr.Column(elem_id="column_input"):
gr.Markdown("## SKETCH", elem_id="input_header")
image = gr.Sketchpad(
type="pil",
height=512,
width=512,
min_width=512,
image_mode="RGBA",
show_label=False,
mirror_webcam=False,
show_download_button=True,
elem_id='input_image',
brush=gr.Brush(colors=["#000000"], color_mode="fixed", default_size=4),
canvas_size=(1024, 1024),
layers=False
)
with gr.Group():
with gr.Row():
url_image = gr.Textbox(label="Image URLS", value="")
type_image = gr.Radio(
choices=["RGB", "SKETCH"],
value="SKETCH",
label="Type of Image (Color Image or Sketch Image)",
interactive=True)
with gr.Row():
ui_mode = gr.Radio(
choices=["Light Mode", "Dark Mode"],
value="Light Mode",
label="Switch Light/Dark Mode UI",
interactive=True)
zero_gpu_options = gr.Radio(
choices=["GPU", "CPU"],
value="GPU",
label="GPU & CPU Options Spaces",
interactive=True)
model_options = gr.Radio(
choices=["350k", "350k-adapter"],
value="350k-adapter",
label="Type Sketch2Image models",
interactive=True)
half_model = gr.Radio(
choices=["float32", "float16"],
value="float16",
label="Demo Speed",
interactive=True)
with gr.Column(elem_id="column_output"):
gr.Markdown("## IMAGE GENERATE", elem_id="output_header")
result = gr.Image(
label="Result",
height=440,
width=440,
elem_id="output_image",
show_label=False,
show_download_button=True,
)
with gr.Group():
prompt = gr.Textbox(label="Personalized Text", value="", show_label=True)
with gr.Row():
run_button = gr.Button("Generate 🪄", min_width=5, variant='primary')
randomize_seed = gr.Button(value='\U0001F3B2', variant='primary')
clear_button = gr.Button("Reset Sketch Session", min_width=10, variant='primary')
with gr.Accordion("S2I Advances Option", open=True):
with gr.Row():
# input_type = gr.Radio(
# choices=["live-sketch", "url-sketch"],
# value="live-sketch",
# label="Type Sketch2Image models",
# interactive=True)
input_type = gr.Textbox(
label="Check URL or Real-time Input",
interactive=True)
prompt_quality = gr.Radio(
choices=["short-sentences", "long-sentences"],
value="short-sentences",
label="Long/Short of Text Prompt",
interactive=True)
style = gr.Dropdown(
label="Style",
choices=controller.STYLE_NAMES,
value=controller.DEFAULT_STYLE_NAME,
scale=1,
)
prompt_temp = gr.Textbox(
label="Prompt Style Template",
value=controller.styles[controller.DEFAULT_STYLE_NAME],
scale=2,
max_lines=1,
)
seed = gr.Textbox(label="Seed", value='42', scale=1, min_width=50)
val_r = gr.Slider(
label="Sketch guidance: ",
show_label=True,
minimum=0,
maximum=1,
value=0.4,
step=0.01,
scale=3,
)
demo.load(None, None, None, js=scripts)
ui_mode.change(None, [], [], js=get_dark_mode())
randomize_seed.click(
lambda x: random.randint(0, controller.MAX_SEED),
inputs=[],
outputs=seed,
queue=False,
api_name=False,
)
inputs = [zero_gpu_options, image, prompt, prompt_temp, style, seed, val_r, half_model, model_options, input_type, prompt_quality]
outputs = [result]
prompt.submit(fn=assign_gpu, inputs=inputs, outputs=outputs, api_name=False)
style.change(
lambda x: controller.styles[x],
inputs=[style],
outputs=[prompt_temp],
queue=False,
api_name=False,
).then(
fn=assign_gpu,
inputs=inputs,
outputs=outputs,
api_name=False,
)
clear_button.click(fn=clear_session, inputs=[image], outputs=[image, result])
val_r.change(assign_gpu, inputs=inputs, outputs=outputs, queue=False, api_name=False)
run_button.click(fn=assign_gpu, inputs=inputs, outputs=outputs, api_name=False)
image.change(assign_gpu, inputs=inputs, outputs=outputs, queue=False, api_name=False)
url_image.submit(fn=get_meta_from_image, inputs=[url_image, type_image], outputs=[image, input_type])
url_image.change(fn=get_meta_from_image, inputs=[url_image, type_image], outputs=[image, input_type])
if __name__ == '__main__':
demo.queue()
demo.launch(debug=True, share=False)