import os import numpy as np import io import requests from io import BytesIO os.system("pip install gradio==4.37.2") os.system("pip install opencv-python") import cv2 import gradio as gr import random import warnings import spaces from PIL import Image from S2I import Sketch2ImageController, css, scripts dark_mode_theme = """ function refresh() { const url = new URL(window.location); if (url.searchParams.get('__theme') !== 'dark') { url.searchParams.set('__theme', 'dark'); window.location.href = url.href; } } """ os.environ["TOKENIZERS_PARALLELISM"] = "false" warnings.filterwarnings("ignore") controller = Sketch2ImageController(gr) def run_gpu(options, img_init, text_init, prompt_template_init, style_name_init, seeds_init, val_r_values_init, faster_init, model_name_init, clear_flag): return controller.artwork(options, img_init, text_init, prompt_template_init, style_name_init, seeds_init, val_r_values_init, faster_init, model_name_init, clear_flag) def run_cpu(options, img_init, text_init, prompt_template_init, style_name_init, seeds_init, val_r_values_init, faster_init, model_name_init, clear_flag): return controller.artwork(options, img_init, text_init, prompt_template_init, style_name_init, seeds_init, val_r_values_init, faster_init, model_name_init, clear_flag) def get_dark_mode(): return """ () => { document.body.classList.toggle('dark'); } """ def clear_session(): return gr.update(value=None), gr.update(value=None) def assign_gpu(options, img_init, text_init, prompt_template_init, style_name_init, seeds_init, val_r_values_init, faster_init, model_name_init, clear_flag): if options == 'GPU': decorated_run = spaces.GPU(run_gpu) return decorated_run(options, img_init, text_init, prompt_template_init, style_name_init, seeds_init, val_r_values_init, faster_init, model_name_init, clear_flag) else: return run_cpu(options, img_init, text_init, prompt_template_init, style_name_init, seeds_init, val_r_values_init, faster_init, model_name_init, clear_flag) def read_temp_file(temp_file_wrapper): name = temp_file_wrapper.name with open(temp_file_wrapper.name, 'rb') as f: # Read the content of the file file_content = f.read() return file_content, name def convert_to_pencil_sketch(image): if image is None: raise ValueError(f"Image at path {image} could not be loaded.") # Converting it into grayscale gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Inverting the image inverted_image = 255 - gray_image # Blurring the image blurred = cv2.GaussianBlur(inverted_image, (25, 25), 0) inverted_blurred = 255 - blurred # Creating the pencil sketch pencil_sketch = cv2.divide(gray_image, inverted_blurred, scale=256.0) return pencil_sketch def get_meta_from_image(input_img, type_image): if input_img is None: return gr.update(value=None) img = Image.open(BytesIO(requests.get(input_img).content)).convert('RGB') # Read the image using Pillow img_np = np.array(img) if type_image == 'RGB': sketch = convert_to_pencil_sketch(img_np) processed_img = 255 - sketch elif type_image == 'SKETCH': processed_img = 255 - img_np # Convert the processed image back to PIL Image img_pil = Image.fromarray(processed_img.astype('uint8')) return img_pil with gr.Blocks(css=css, theme="NoCrypt/miku@1.2.1") as demo: gr.HTML( """ S2I-Artwork Animation

icon S2I-Artwork icon: Personalized Sketch-to-Art 🧨 Diffusion Models icon

Authors: Vo Nguyen An Tin, Nguyen Thiet Su

*This project is the fine-tuning task with LorA on large datasets included: COCO-2017, LHQ, Danbooru, LandScape and Mid-Journey V6

* We public 2 sketch2image-models-lora training on 30K and 60K steps with skip-connection and Transformers Super-Resolution variables

* The inference and demo time of model is faster, you can slowly in the first runtime, but after that, the time process over 1.5 ~ 2s

* View the full code project: GitHub Repository

Buy Me A Coffee

""" ) with gr.Row(elem_id="main_row"): with gr.Column(elem_id="column_input"): gr.Markdown("## SKETCH", elem_id="input_header") image = gr.Sketchpad( type="pil", height=512, width=512, min_width=512, image_mode="RGBA", show_label=False, mirror_webcam=False, show_download_button=True, elem_id='input_image', brush=gr.Brush(colors=["#000000"], color_mode="fixed", default_size=4), canvas_size=(1024, 1024), layers=False ) # input_image = gr.File(label='Input image') url_image = gr.Textbox(label="Image URLS", value="") download_sketch = gr.Button( "Download sketch", scale=1, elem_id="download_sketch" ) with gr.Column(elem_id="column_output"): gr.Markdown("## IMAGE GENERATE", elem_id="output_header") result = gr.Image( label="Result", height=440, width=440, elem_id="output_image", show_label=False, show_download_button=True, ) with gr.Group(): with gr.Row(): run_button = gr.Button("Generate 🪄", min_width=5, variant='primary') randomize_seed = gr.Button(value='\U0001F3B2', variant='primary') clear_button = gr.Button("Reset Sketch Session", min_width=10, variant='primary') prompt = gr.Textbox(label="Personalized Text", value="", show_label=True) with gr.Accordion("S2I Advances Option", open=True): with gr.Row(): ui_mode = gr.Radio( choices=["Light Mode", "Dark Mode"], value="Light Mode", label="Switch Light/Dark Mode UI", interactive=True) type_image = gr.Radio( choices=["RGB", "SKETCH"], value="SKETCH", label="Type of Image (Color Image or Sketch Image)", interactive=True) input_type = gr.Radio( choices=["live-sketch", "url-sketch"], value="live-sketch", label="Type Sketch2Image models", interactive=True) style = gr.Dropdown( label="Style", choices=controller.STYLE_NAMES, value=controller.DEFAULT_STYLE_NAME, scale=1, ) prompt_temp = gr.Textbox( label="Prompt Style Template", value=controller.styles[controller.DEFAULT_STYLE_NAME], scale=2, max_lines=1, ) seed = gr.Textbox(label="Seed", value='42', scale=1, min_width=50) zero_gpu_options = gr.Radio( choices=["GPU", "CPU"], value="GPU", label="GPU & CPU Options Spaces", interactive=True) half_model = gr.Radio( choices=["float32", "float16"], value="float16", label="Demo Speed", interactive=True) model_options = gr.Radio( choices=["350k", "350k-adapter"], value="350k-adapter", label="Type Sketch2Image models", interactive=True) val_r = gr.Slider( label="Sketch guidance: ", show_label=True, minimum=0, maximum=1, value=0.4, step=0.01, scale=3, ) demo.load(None, None, None, js=scripts) ui_mode.change(None, [], [], js=get_dark_mode()) randomize_seed.click( lambda x: random.randint(0, controller.MAX_SEED), inputs=[], outputs=seed, queue=False, api_name=False, ) inputs = [zero_gpu_options, image, prompt, prompt_temp, style, seed, val_r, half_model, model_options, input_type] outputs = [result, download_sketch] prompt.submit(fn=assign_gpu, inputs=inputs, outputs=outputs, api_name=False) style.change( lambda x: controller.styles[x], inputs=[style], outputs=[prompt_temp], queue=False, api_name=False, ).then( fn=assign_gpu, inputs=inputs, outputs=outputs, api_name=False, ) clear_button.click(fn=clear_session, inputs=[], outputs=[image, result]) val_r.change(assign_gpu, inputs=inputs, outputs=outputs, queue=False, api_name=False) run_button.click(fn=assign_gpu, inputs=inputs, outputs=outputs, api_name=False) image.change(assign_gpu, inputs=inputs, outputs=outputs, queue=False, api_name=False) url_image.submit(fn=get_meta_from_image, inputs=[url_image, type_image], outputs=[image]) url_image.change(fn=get_meta_from_image, inputs=[url_image, type_image], outputs=[image]) if __name__ == '__main__': demo.queue() demo.launch(debug=True, share=False)