Spaces:
Running
Running
from typing import Any, Dict, List | |
import streamlit as st | |
from langchain_core.outputs import LLMResult | |
from streamlit.external.langchain import StreamlitCallbackHandler | |
class ChatDataSelfQueryCallBack(StreamlitCallbackHandler): | |
def __init__(self): | |
super().__init__(st.container()) | |
self._current_thought = None | |
self.progress_bar = st.progress(value=0.0, text="Executing ChatData SelfQuery CallBack...") | |
def on_llm_start( | |
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any | |
) -> None: | |
self.progress_bar.progress(value=0.35, text="Communicate with LLM...") | |
pass | |
def on_chain_end(self, outputs, **kwargs) -> None: | |
if len(kwargs['tags']) == 0: | |
self.progress_bar.progress(value=0.75, text="Searching in DB...") | |
def on_chain_start(self, serialized, inputs, **kwargs) -> None: | |
pass | |
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: | |
st.markdown("### Generate filter by LLM \n" | |
"> Here we get `query_constructor` results \n\n") | |
self.progress_bar.progress(value=0.5, text="Generate filter by LLM...") | |
for item in response.generations: | |
st.markdown(f"{item[0].text}") | |
pass | |