Spaces:
Running
Running
Fangrui Liu
commited on
Commit
β’
fab8405
1
Parent(s):
c5b06e8
update chat memory schema
Browse files- app.py +112 -111
- callbacks/arxiv_callbacks.py +3 -2
- chat.py +28 -181
- helper.py +5 -2
- login.py +53 -0
app.py
CHANGED
@@ -1,125 +1,126 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
ChatDataSelfAskCallBackHandler, ChatDataSQLSearchCallBackHandler, \
|
4 |
-
ChatDataSQLAskCallBackHandler
|
5 |
-
from chains.arxiv_chains import ArXivQAwithSourcesChain, ArXivStuffDocumentChain
|
6 |
-
from chains.arxiv_chains import VectorSQLRetrieveCustomOutputParser
|
7 |
-
from langchain_experimental.sql.vector_sql import VectorSQLDatabaseChain
|
8 |
-
from langchain_experimental.retrievers.vector_sql_database import VectorSQLDatabaseChainRetriever
|
9 |
-
from langchain.utilities.sql_database import SQLDatabase
|
10 |
-
from langchain.chains import LLMChain
|
11 |
-
from sqlalchemy import create_engine, MetaData
|
12 |
-
from langchain.prompts import PromptTemplate, ChatPromptTemplate, \
|
13 |
-
SystemMessagePromptTemplate, HumanMessagePromptTemplate
|
14 |
-
from langchain.prompts.prompt import PromptTemplate
|
15 |
-
from langchain.chat_models import ChatOpenAI
|
16 |
-
from langchain import OpenAI
|
17 |
-
import re
|
18 |
import pandas as pd
|
19 |
from os import environ
|
20 |
import streamlit as st
|
21 |
-
import datetime
|
22 |
-
from helper import build_all, sel_map, display
|
23 |
-
environ['OPENAI_API_BASE'] = st.secrets['OPENAI_API_BASE']
|
24 |
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
|
|
27 |
st.header("ChatData")
|
28 |
|
29 |
if 'retriever' not in st.session_state:
|
30 |
st.session_state["sel_map_obj"] = build_all()
|
|
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
|
79 |
|
80 |
-
with tab_self_query:
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
1 |
+
import json
|
2 |
+
import time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import pandas as pd
|
4 |
from os import environ
|
5 |
import streamlit as st
|
|
|
|
|
|
|
6 |
|
7 |
+
from callbacks.arxiv_callbacks import ChatDataSelfSearchCallBackHandler, \
|
8 |
+
ChatDataSelfAskCallBackHandler, ChatDataSQLSearchCallBackHandler, \
|
9 |
+
ChatDataSQLAskCallBackHandler
|
10 |
+
|
11 |
+
from chat import chat_page
|
12 |
+
from login import login, back_to_main
|
13 |
+
|
14 |
+
|
15 |
+
from helper import build_tools, build_agents, build_all, sel_map, display
|
16 |
+
|
17 |
+
environ['OPENAI_API_BASE'] = st.secrets['OPENAI_API_BASE']
|
18 |
|
19 |
+
st.set_page_config(page_title="ChatData", page_icon="https://myscale.com/favicon.ico")
|
20 |
st.header("ChatData")
|
21 |
|
22 |
if 'retriever' not in st.session_state:
|
23 |
st.session_state["sel_map_obj"] = build_all()
|
24 |
+
st.session_state["tools"] = build_tools()
|
25 |
|
26 |
+
if login():
|
27 |
+
if "user_name" in st.session_state:
|
28 |
+
chat_page()
|
29 |
+
elif "jump_query_ask" in st.session_state and st.session_state.jump_query_ask:
|
30 |
+
|
31 |
+
sel = st.selectbox('Choose the knowledge base you want to ask with:',
|
32 |
+
options=['ArXiv Papers', 'Wikipedia'])
|
33 |
+
sel_map[sel]['hint']()
|
34 |
+
tab_sql, tab_self_query = st.tabs(['Vector SQL', 'Self-Query Retrievers'])
|
35 |
+
with tab_sql:
|
36 |
+
sel_map[sel]['hint_sql']()
|
37 |
+
st.text_input("Ask a question:", key='query_sql')
|
38 |
+
cols = st.columns([1, 1, 1, 4])
|
39 |
+
cols[0].button("Query", key='search_sql')
|
40 |
+
cols[1].button("Ask", key='ask_sql')
|
41 |
+
cols[2].button("Back", key='back_sql', on_click=back_to_main)
|
42 |
+
plc_hldr = st.empty()
|
43 |
+
if st.session_state.search_sql:
|
44 |
+
plc_hldr = st.empty()
|
45 |
+
print(st.session_state.query_sql)
|
46 |
+
with plc_hldr.expander('Query Log', expanded=True):
|
47 |
+
callback = ChatDataSQLSearchCallBackHandler()
|
48 |
+
try:
|
49 |
+
docs = st.session_state.sel_map_obj[sel]["sql_retriever"].get_relevant_documents(
|
50 |
+
st.session_state.query_sql, callbacks=[callback])
|
51 |
+
callback.progress_bar.progress(value=1.0, text="Done!")
|
52 |
+
docs = pd.DataFrame(
|
53 |
+
[{**d.metadata, 'abstract': d.page_content} for d in docs])
|
54 |
+
display(docs)
|
55 |
+
except Exception as e:
|
56 |
+
st.write('Oops π΅ Something bad happened...')
|
57 |
+
raise e
|
58 |
|
59 |
+
if st.session_state.ask_sql:
|
60 |
+
plc_hldr = st.empty()
|
61 |
+
print(st.session_state.query_sql)
|
62 |
+
with plc_hldr.expander('Chat Log', expanded=True):
|
63 |
+
callback = ChatDataSQLAskCallBackHandler()
|
64 |
+
try:
|
65 |
+
ret = st.session_state.sel_map_obj[sel]["sql_chain"](
|
66 |
+
st.session_state.query_sql, callbacks=[callback])
|
67 |
+
callback.progress_bar.progress(value=1.0, text="Done!")
|
68 |
+
st.markdown(
|
69 |
+
f"### Answer from LLM\n{ret['answer']}\n### References")
|
70 |
+
docs = ret['sources']
|
71 |
+
docs = pd.DataFrame(
|
72 |
+
[{**d.metadata, 'abstract': d.page_content} for d in docs])
|
73 |
+
display(
|
74 |
+
docs, ['ref_id'] + sel_map[sel]["must_have_cols"], index='ref_id')
|
75 |
+
except Exception as e:
|
76 |
+
st.write('Oops π΅ Something bad happened...')
|
77 |
+
raise e
|
78 |
|
79 |
|
80 |
+
with tab_self_query:
|
81 |
+
st.info("You can retrieve papers with button `Query` or ask questions based on retrieved papers with button `Ask`.", icon='π‘')
|
82 |
+
st.dataframe(st.session_state.sel_map_obj[sel]["metadata_columns"])
|
83 |
+
st.text_input("Ask a question:", key='query_self')
|
84 |
+
cols = st.columns([1, 1, 1, 4])
|
85 |
+
cols[0].button("Query", key='search_self')
|
86 |
+
cols[1].button("Ask", key='ask_self')
|
87 |
+
cols[2].button("Back", key='back_self', on_click=back_to_main)
|
88 |
+
plc_hldr = st.empty()
|
89 |
+
if st.session_state.search_self:
|
90 |
+
plc_hldr = st.empty()
|
91 |
+
print(st.session_state.query_self)
|
92 |
+
with plc_hldr.expander('Query Log', expanded=True):
|
93 |
+
call_back = None
|
94 |
+
callback = ChatDataSelfSearchCallBackHandler()
|
95 |
+
try:
|
96 |
+
docs = st.session_state.sel_map_obj[sel]["retriever"].get_relevant_documents(
|
97 |
+
st.session_state.query_self, callbacks=[callback])
|
98 |
+
print(docs)
|
99 |
+
callback.progress_bar.progress(value=1.0, text="Done!")
|
100 |
+
docs = pd.DataFrame(
|
101 |
+
[{**d.metadata, 'abstract': d.page_content} for d in docs])
|
102 |
+
display(docs, sel_map[sel]["must_have_cols"])
|
103 |
+
except Exception as e:
|
104 |
+
st.write('Oops π΅ Something bad happened...')
|
105 |
+
raise e
|
106 |
|
107 |
+
if st.session_state.ask_self:
|
108 |
+
plc_hldr = st.empty()
|
109 |
+
print(st.session_state.query_self)
|
110 |
+
with plc_hldr.expander('Chat Log', expanded=True):
|
111 |
+
call_back = None
|
112 |
+
callback = ChatDataSelfAskCallBackHandler()
|
113 |
+
try:
|
114 |
+
ret = st.session_state.sel_map_obj[sel]["chain"](
|
115 |
+
st.session_state.query_self, callbacks=[callback])
|
116 |
+
callback.progress_bar.progress(value=1.0, text="Done!")
|
117 |
+
st.markdown(
|
118 |
+
f"### Answer from LLM\n{ret['answer']}\n### References")
|
119 |
+
docs = ret['sources']
|
120 |
+
docs = pd.DataFrame(
|
121 |
+
[{**d.metadata, 'abstract': d.page_content} for d in docs])
|
122 |
+
display(
|
123 |
+
docs, ['ref_id'] + sel_map[sel]["must_have_cols"], index='ref_id')
|
124 |
+
except Exception as e:
|
125 |
+
st.write('Oops π΅ Something bad happened...')
|
126 |
+
raise e
|
callbacks/arxiv_callbacks.py
CHANGED
@@ -17,8 +17,9 @@ class ChatDataSelfSearchCallBackHandler(StreamlitCallbackHandler):
|
|
17 |
|
18 |
def on_chain_end(self, outputs, **kwargs) -> None:
|
19 |
self.progress_bar.progress(value=0.6, text='Searching in DB...')
|
20 |
-
|
21 |
-
|
|
|
22 |
|
23 |
def on_chain_start(self, serialized, inputs, **kwargs) -> None:
|
24 |
pass
|
|
|
17 |
|
18 |
def on_chain_end(self, outputs, **kwargs) -> None:
|
19 |
self.progress_bar.progress(value=0.6, text='Searching in DB...')
|
20 |
+
if 'repr' in outputs:
|
21 |
+
st.markdown('### Generated Filter')
|
22 |
+
st.markdown(f"```python\n{outputs['repr']}\n```", unsafe_allow_html=True)
|
23 |
|
24 |
def on_chain_start(self, serialized, inputs, **kwargs) -> None:
|
25 |
pass
|
chat.py
CHANGED
@@ -1,31 +1,14 @@
|
|
1 |
-
import json
|
2 |
-
import time
|
3 |
import pandas as pd
|
4 |
from os import environ
|
5 |
import datetime
|
6 |
import streamlit as st
|
7 |
-
from langchain.schema import
|
8 |
|
9 |
-
from
|
10 |
-
|
11 |
-
ChatDataSQLAskCallBackHandler
|
12 |
-
|
13 |
-
from langchain.schema import BaseMessage, HumanMessage, AIMessage, FunctionMessage, SystemMessage
|
14 |
-
from auth0_component import login_button
|
15 |
-
|
16 |
-
|
17 |
-
from helper import build_tools, build_agents, build_all, sel_map, display
|
18 |
|
19 |
environ['OPENAI_API_BASE'] = st.secrets['OPENAI_API_BASE']
|
20 |
|
21 |
-
st.set_page_config(page_title="ChatData", page_icon="https://myscale.com/favicon.ico")
|
22 |
-
st.header("ChatData")
|
23 |
-
|
24 |
-
|
25 |
-
if 'retriever' not in st.session_state:
|
26 |
-
st.session_state["sel_map_obj"] = build_all()
|
27 |
-
st.session_state["tools"] = build_tools()
|
28 |
-
|
29 |
def on_chat_submit():
|
30 |
ret = st.session_state.agents[st.session_state.sel][st.session_state.ret_type]({"input": st.session_state.chat_input})
|
31 |
print(ret)
|
@@ -33,45 +16,7 @@ def on_chat_submit():
|
|
33 |
def clear_history():
|
34 |
st.session_state.agents[st.session_state.sel][st.session_state.ret_type].memory.clear()
|
35 |
|
36 |
-
AUTH0_CLIENT_ID = st.secrets['AUTH0_CLIENT_ID']
|
37 |
-
AUTH0_DOMAIN = st.secrets['AUTH0_DOMAIN']
|
38 |
|
39 |
-
def login():
|
40 |
-
if "user_name" in st.session_state or ("jump_query_ask" in st.session_state and st.session_state.jump_query_ask):
|
41 |
-
return True
|
42 |
-
st.subheader("π€ Welcom to [MyScale](https://myscale.com)'s [ChatData](https://github.com/myscale/ChatData)! π€ ")
|
43 |
-
st.write("You can now chat with ArXiv and Wikipedia! π\n")
|
44 |
-
st.write("Built purely with streamlit π , LangChain π¦π and love β€οΈ for AI!")
|
45 |
-
st.write("Follow us on [Twitter](https://x.com/myscaledb) and [Discord](https://discord.gg/D2qpkqc4Jq)!")
|
46 |
-
st.write("For more details, please refer to [our repository on GitHub](https://github.com/myscale/ChatData)!")
|
47 |
-
st.divider()
|
48 |
-
col1, col2 = st.columns(2, gap='large')
|
49 |
-
with col1.container():
|
50 |
-
st.write("Try out MyScale's Self-query and Vector SQL retrievers!")
|
51 |
-
st.write("In this demo, you will be able to see how those retrievers "
|
52 |
-
"**digest** -> **translate** -> **retrieve** -> **answer** to your question!")
|
53 |
-
st.session_state["jump_query_ask"] = st.button("Query / Ask")
|
54 |
-
with col2.container():
|
55 |
-
# st.warning("To use chat, please jump to [https://myscale-chatdata.hf.space](https://myscale-chatdata.hf.space)")
|
56 |
-
st.write("Now with the power of LangChain's Conversantional Agents, we are able to build "
|
57 |
-
"an RAG-enabled chatbot within one MyScale instance! ")
|
58 |
-
st.write("Log in to Chat with RAG!")
|
59 |
-
login_button(AUTH0_CLIENT_ID, AUTH0_DOMAIN, "auth0")
|
60 |
-
st.divider()
|
61 |
-
st.write("- [Privacy Policy](https://myscale.com/privacy/)\n"
|
62 |
-
"- [Terms of Sevice](https://myscale.com/terms/)")
|
63 |
-
if st.session_state.auth0 is not None:
|
64 |
-
st.session_state.user_info = dict(st.session_state.auth0)
|
65 |
-
if 'email' in st.session_state.user_info:
|
66 |
-
email = st.session_state.user_info["email"]
|
67 |
-
else:
|
68 |
-
email = f"{st.session_state.user_info['nickname']}@{st.session_state.user_info['sub']}"
|
69 |
-
st.session_state["user_name"] = email
|
70 |
-
del st.session_state.auth0
|
71 |
-
st.experimental_rerun()
|
72 |
-
if st.session_state.jump_query_ask:
|
73 |
-
st.experimental_rerun()
|
74 |
-
|
75 |
def back_to_main():
|
76 |
if "user_info" in st.session_state:
|
77 |
del st.session_state.user_info
|
@@ -80,127 +25,29 @@ def back_to_main():
|
|
80 |
if "jump_query_ask" in st.session_state:
|
81 |
del st.session_state.jump_query_ask
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
st.write(f"*{datetime.datetime.fromtimestamp(msg.additional_kwargs['timestamp']).isoformat()}*")
|
97 |
-
st.write("
|
98 |
-
|
99 |
-
|
100 |
-
except:
|
101 |
-
st.write(msg.content)
|
102 |
-
else:
|
103 |
-
if len(msg.content) > 0:
|
104 |
-
with st.chat_message(speaker):
|
105 |
-
print(type(msg), msg.dict())
|
106 |
-
st.write(f"*{datetime.datetime.fromtimestamp(msg.additional_kwargs['timestamp']).isoformat()}*")
|
107 |
-
st.write(f"{msg.content}")
|
108 |
-
st.chat_input("Input Message", on_submit=on_chat_submit, key="chat_input")
|
109 |
-
elif "jump_query_ask" in st.session_state and st.session_state.jump_query_ask:
|
110 |
-
|
111 |
-
sel = st.selectbox('Choose the knowledge base you want to ask with:',
|
112 |
-
options=['ArXiv Papers', 'Wikipedia'])
|
113 |
-
sel_map[sel]['hint']()
|
114 |
-
tab_sql, tab_self_query = st.tabs(['Vector SQL', 'Self-Query Retrievers'])
|
115 |
-
with tab_sql:
|
116 |
-
sel_map[sel]['hint_sql']()
|
117 |
-
st.text_input("Ask a question:", key='query_sql')
|
118 |
-
cols = st.columns([1, 1, 1, 4])
|
119 |
-
cols[0].button("Query", key='search_sql')
|
120 |
-
cols[1].button("Ask", key='ask_sql')
|
121 |
-
cols[2].button("Back", key='back_sql', on_click=back_to_main)
|
122 |
-
plc_hldr = st.empty()
|
123 |
-
if st.session_state.search_sql:
|
124 |
-
plc_hldr = st.empty()
|
125 |
-
print(st.session_state.query_sql)
|
126 |
-
with plc_hldr.expander('Query Log', expanded=True):
|
127 |
-
callback = ChatDataSQLSearchCallBackHandler()
|
128 |
-
try:
|
129 |
-
docs = st.session_state.sel_map_obj[sel]["sql_retriever"].get_relevant_documents(
|
130 |
-
st.session_state.query_sql, callbacks=[callback])
|
131 |
-
callback.progress_bar.progress(value=1.0, text="Done!")
|
132 |
-
docs = pd.DataFrame(
|
133 |
-
[{**d.metadata, 'abstract': d.page_content} for d in docs])
|
134 |
-
display(docs)
|
135 |
-
except Exception as e:
|
136 |
-
st.write('Oops π΅ Something bad happened...')
|
137 |
-
raise e
|
138 |
-
|
139 |
-
if st.session_state.ask_sql:
|
140 |
-
plc_hldr = st.empty()
|
141 |
-
print(st.session_state.query_sql)
|
142 |
-
with plc_hldr.expander('Chat Log', expanded=True):
|
143 |
-
callback = ChatDataSQLAskCallBackHandler()
|
144 |
-
try:
|
145 |
-
ret = st.session_state.sel_map_obj[sel]["sql_chain"](
|
146 |
-
st.session_state.query_sql, callbacks=[callback])
|
147 |
-
callback.progress_bar.progress(value=1.0, text="Done!")
|
148 |
-
st.markdown(
|
149 |
-
f"### Answer from LLM\n{ret['answer']}\n### References")
|
150 |
-
docs = ret['sources']
|
151 |
-
docs = pd.DataFrame(
|
152 |
-
[{**d.metadata, 'abstract': d.page_content} for d in docs])
|
153 |
-
display(
|
154 |
-
docs, ['ref_id'] + sel_map[sel]["must_have_cols"], index='ref_id')
|
155 |
-
except Exception as e:
|
156 |
-
st.write('Oops π΅ Something bad happened...')
|
157 |
-
raise e
|
158 |
-
|
159 |
-
|
160 |
-
with tab_self_query:
|
161 |
-
st.info("You can retrieve papers with button `Query` or ask questions based on retrieved papers with button `Ask`.", icon='π‘')
|
162 |
-
st.dataframe(st.session_state.sel_map_obj[sel]["metadata_columns"])
|
163 |
-
st.text_input("Ask a question:", key='query_self')
|
164 |
-
cols = st.columns([1, 1, 1, 4])
|
165 |
-
cols[0].button("Query", key='search_self')
|
166 |
-
cols[1].button("Ask", key='ask_self')
|
167 |
-
cols[2].button("Back", key='back_self', on_click=back_to_main)
|
168 |
-
plc_hldr = st.empty()
|
169 |
-
if st.session_state.search_self:
|
170 |
-
plc_hldr = st.empty()
|
171 |
-
print(st.session_state.query_self)
|
172 |
-
with plc_hldr.expander('Query Log', expanded=True):
|
173 |
-
call_back = None
|
174 |
-
callback = ChatDataSelfSearchCallBackHandler()
|
175 |
-
try:
|
176 |
-
docs = st.session_state.sel_map_obj[sel]["retriever"].get_relevant_documents(
|
177 |
-
st.session_state.query_self, callbacks=[callback])
|
178 |
-
print(docs)
|
179 |
-
callback.progress_bar.progress(value=1.0, text="Done!")
|
180 |
-
docs = pd.DataFrame(
|
181 |
-
[{**d.metadata, 'abstract': d.page_content} for d in docs])
|
182 |
-
display(docs, sel_map[sel]["must_have_cols"])
|
183 |
-
except Exception as e:
|
184 |
-
st.write('Oops π΅ Something bad happened...')
|
185 |
-
raise e
|
186 |
-
|
187 |
-
if st.session_state.ask_self:
|
188 |
-
plc_hldr = st.empty()
|
189 |
-
print(st.session_state.query_self)
|
190 |
-
with plc_hldr.expander('Chat Log', expanded=True):
|
191 |
-
call_back = None
|
192 |
-
callback = ChatDataSelfAskCallBackHandler()
|
193 |
-
try:
|
194 |
-
ret = st.session_state.sel_map_obj[sel]["chain"](
|
195 |
-
st.session_state.query_self, callbacks=[callback])
|
196 |
-
callback.progress_bar.progress(value=1.0, text="Done!")
|
197 |
-
st.markdown(
|
198 |
-
f"### Answer from LLM\n{ret['answer']}\n### References")
|
199 |
-
docs = ret['sources']
|
200 |
-
docs = pd.DataFrame(
|
201 |
-
[{**d.metadata, 'abstract': d.page_content} for d in docs])
|
202 |
-
display(
|
203 |
-
docs, ['ref_id'] + sel_map[sel]["must_have_cols"], index='ref_id')
|
204 |
-
except Exception as e:
|
205 |
-
st.write('Oops π΅ Something bad happened...')
|
206 |
-
raise e
|
|
|
|
|
|
|
1 |
import pandas as pd
|
2 |
from os import environ
|
3 |
import datetime
|
4 |
import streamlit as st
|
5 |
+
from langchain.schema import HumanMessage, FunctionMessage
|
6 |
|
7 |
+
from helper import build_agents
|
8 |
+
from login import back_to_main
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
environ['OPENAI_API_BASE'] = st.secrets['OPENAI_API_BASE']
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
def on_chat_submit():
|
13 |
ret = st.session_state.agents[st.session_state.sel][st.session_state.ret_type]({"input": st.session_state.chat_input})
|
14 |
print(ret)
|
|
|
16 |
def clear_history():
|
17 |
st.session_state.agents[st.session_state.sel][st.session_state.ret_type].memory.clear()
|
18 |
|
|
|
|
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
def back_to_main():
|
21 |
if "user_info" in st.session_state:
|
22 |
del st.session_state.user_info
|
|
|
25 |
if "jump_query_ask" in st.session_state:
|
26 |
del st.session_state.jump_query_ask
|
27 |
|
28 |
+
def chat_page():
|
29 |
+
st.session_state["agents"] = build_agents(f"{st.session_state.user_name}?default")
|
30 |
+
with st.sidebar:
|
31 |
+
st.radio("Retriever Type", ["Self-querying retriever", "Vector SQL"], key="ret_type")
|
32 |
+
st.selectbox("Knowledge Base", ["ArXiv Papers", "Wikipedia", "ArXiv + Wikipedia"], key="sel")
|
33 |
+
st.button("Clear Chat History", on_click=clear_history)
|
34 |
+
st.button("Logout", on_click=back_to_main)
|
35 |
+
for msg in st.session_state.agents[st.session_state.sel][st.session_state.ret_type].memory.chat_memory.messages:
|
36 |
+
speaker = "user" if isinstance(msg, HumanMessage) else "assistant"
|
37 |
+
if isinstance(msg, FunctionMessage):
|
38 |
+
with st.chat_message("Knowledge Base", avatar="π"):
|
39 |
+
print(type(msg.content))
|
40 |
+
st.write(f"*{datetime.datetime.fromtimestamp(msg.additional_kwargs['timestamp']).isoformat()}*")
|
41 |
+
st.write("Retrieved from knowledge base:")
|
42 |
+
try:
|
43 |
+
st.dataframe(pd.DataFrame.from_records(map(dict, eval(msg.content))))
|
44 |
+
except:
|
45 |
+
st.write(msg.content)
|
46 |
+
else:
|
47 |
+
if len(msg.content) > 0:
|
48 |
+
with st.chat_message(speaker):
|
49 |
+
print(type(msg), msg.dict())
|
50 |
st.write(f"*{datetime.datetime.fromtimestamp(msg.additional_kwargs['timestamp']).isoformat()}*")
|
51 |
+
st.write(f"{msg.content}")
|
52 |
+
st.chat_input("Input Message", on_submit=on_chat_submit, key="chat_input")
|
53 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
helper.py
CHANGED
@@ -369,6 +369,7 @@ def create_message_model(table_name, DynamicBase): # type: ignore
|
|
369 |
__tablename__ = table_name
|
370 |
id = Column(types.Float64)
|
371 |
session_id = Column(Text)
|
|
|
372 |
msg_id = Column(Text, primary_key=True)
|
373 |
type = Column(Text)
|
374 |
addtionals = Column(Text)
|
@@ -391,9 +392,11 @@ class DefaultClickhouseMessageConverter(DefaultMessageConverter):
|
|
391 |
def to_sql_model(self, message: BaseMessage, session_id: str) -> Any:
|
392 |
tstamp = time.time()
|
393 |
msg_id = hashlib.sha256(f"{session_id}_{message}_{tstamp}".encode('utf-8')).hexdigest()
|
|
|
394 |
return self.model_class(
|
395 |
id=tstamp,
|
396 |
msg_id=msg_id,
|
|
|
397 |
session_id=session_id,
|
398 |
type=message.type,
|
399 |
addtionals=json.dumps(message.additional_kwargs),
|
@@ -467,7 +470,7 @@ def build_tools():
|
|
467 |
return sel_map_obj
|
468 |
|
469 |
@st.cache_resource(max_entries=1)
|
470 |
-
def build_agents(
|
471 |
chat_llm = ChatOpenAI(model_name=chat_model_name, temperature=0.6, openai_api_base=OPENAI_API_BASE, openai_api_key=OPENAI_API_KEY)
|
472 |
agents = {}
|
473 |
cnt = 0
|
@@ -484,7 +487,7 @@ def build_agents(username):
|
|
484 |
agents[k] = {}
|
485 |
agents[k][n] = create_agent_executor(
|
486 |
"chat_memory",
|
487 |
-
|
488 |
chat_llm,
|
489 |
tools=tools,
|
490 |
)
|
|
|
369 |
__tablename__ = table_name
|
370 |
id = Column(types.Float64)
|
371 |
session_id = Column(Text)
|
372 |
+
user_id = Column(Text)
|
373 |
msg_id = Column(Text, primary_key=True)
|
374 |
type = Column(Text)
|
375 |
addtionals = Column(Text)
|
|
|
392 |
def to_sql_model(self, message: BaseMessage, session_id: str) -> Any:
|
393 |
tstamp = time.time()
|
394 |
msg_id = hashlib.sha256(f"{session_id}_{message}_{tstamp}".encode('utf-8')).hexdigest()
|
395 |
+
user_id, _ = session_id.split("?")
|
396 |
return self.model_class(
|
397 |
id=tstamp,
|
398 |
msg_id=msg_id,
|
399 |
+
user_id=user_id,
|
400 |
session_id=session_id,
|
401 |
type=message.type,
|
402 |
addtionals=json.dumps(message.additional_kwargs),
|
|
|
470 |
return sel_map_obj
|
471 |
|
472 |
@st.cache_resource(max_entries=1)
|
473 |
+
def build_agents(session_id):
|
474 |
chat_llm = ChatOpenAI(model_name=chat_model_name, temperature=0.6, openai_api_base=OPENAI_API_BASE, openai_api_key=OPENAI_API_KEY)
|
475 |
agents = {}
|
476 |
cnt = 0
|
|
|
487 |
agents[k] = {}
|
488 |
agents[k][n] = create_agent_executor(
|
489 |
"chat_memory",
|
490 |
+
session_id,
|
491 |
chat_llm,
|
492 |
tools=tools,
|
493 |
)
|
login.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import time
|
3 |
+
import pandas as pd
|
4 |
+
from os import environ
|
5 |
+
import streamlit as st
|
6 |
+
from auth0_component import login_button
|
7 |
+
|
8 |
+
AUTH0_CLIENT_ID = st.secrets['AUTH0_CLIENT_ID']
|
9 |
+
AUTH0_DOMAIN = st.secrets['AUTH0_DOMAIN']
|
10 |
+
|
11 |
+
def login():
|
12 |
+
if "user_name" in st.session_state or ("jump_query_ask" in st.session_state and st.session_state.jump_query_ask):
|
13 |
+
return True
|
14 |
+
st.subheader("π€ Welcom to [MyScale](https://myscale.com)'s [ChatData](https://github.com/myscale/ChatData)! π€ ")
|
15 |
+
st.write("You can now chat with ArXiv and Wikipedia! π\n")
|
16 |
+
st.write("Built purely with streamlit π , LangChain π¦π and love β€οΈ for AI!")
|
17 |
+
st.write("Follow us on [Twitter](https://x.com/myscaledb) and [Discord](https://discord.gg/D2qpkqc4Jq)!")
|
18 |
+
st.write("For more details, please refer to [our repository on GitHub](https://github.com/myscale/ChatData)!")
|
19 |
+
st.divider()
|
20 |
+
col1, col2 = st.columns(2, gap='large')
|
21 |
+
with col1.container():
|
22 |
+
st.write("Try out MyScale's Self-query and Vector SQL retrievers!")
|
23 |
+
st.write("In this demo, you will be able to see how those retrievers "
|
24 |
+
"**digest** -> **translate** -> **retrieve** -> **answer** to your question!")
|
25 |
+
st.session_state["jump_query_ask"] = st.button("Query / Ask")
|
26 |
+
with col2.container():
|
27 |
+
# st.warning("To use chat, please jump to [https://myscale-chatdata.hf.space](https://myscale-chatdata.hf.space)")
|
28 |
+
st.write("Now with the power of LangChain's Conversantional Agents, we are able to build "
|
29 |
+
"an RAG-enabled chatbot within one MyScale instance! ")
|
30 |
+
st.write("Log in to Chat with RAG!")
|
31 |
+
login_button(AUTH0_CLIENT_ID, AUTH0_DOMAIN, "auth0")
|
32 |
+
st.divider()
|
33 |
+
st.write("- [Privacy Policy](https://myscale.com/privacy/)\n"
|
34 |
+
"- [Terms of Sevice](https://myscale.com/terms/)")
|
35 |
+
if st.session_state.auth0 is not None:
|
36 |
+
st.session_state.user_info = dict(st.session_state.auth0)
|
37 |
+
if 'email' in st.session_state.user_info:
|
38 |
+
email = st.session_state.user_info["email"]
|
39 |
+
else:
|
40 |
+
email = f"{st.session_state.user_info['nickname']}@{st.session_state.user_info['sub']}"
|
41 |
+
st.session_state["user_name"] = email
|
42 |
+
del st.session_state.auth0
|
43 |
+
st.experimental_rerun()
|
44 |
+
if st.session_state.jump_query_ask:
|
45 |
+
st.experimental_rerun()
|
46 |
+
|
47 |
+
def back_to_main():
|
48 |
+
if "user_info" in st.session_state:
|
49 |
+
del st.session_state.user_info
|
50 |
+
if "user_name" in st.session_state:
|
51 |
+
del st.session_state.user_name
|
52 |
+
if "jump_query_ask" in st.session_state:
|
53 |
+
del st.session_state.jump_query_ask
|