File size: 19,493 Bytes
3f1124e
 
 
 
 
 
 
 
 
 
2cff12a
3f1124e
 
 
 
 
 
2cff12a
3f1124e
 
 
2cff12a
3f1124e
 
 
 
 
 
 
 
 
 
 
 
 
 
2cff12a
3f1124e
2cff12a
3f1124e
 
 
 
 
 
 
2cff12a
3f1124e
 
 
 
 
 
 
 
 
 
2cff12a
3f1124e
 
 
 
 
 
 
2cff12a
 
3f1124e
 
 
 
 
 
2cff12a
3f1124e
 
 
 
 
 
 
 
2cff12a
3f1124e
2cff12a
3f1124e
2cff12a
3f1124e
 
 
 
2cff12a
3f1124e
 
 
 
 
 
 
 
2cff12a
3f1124e
 
 
 
 
 
 
 
 
 
 
 
 
2cff12a
 
 
 
 
 
 
 
 
3f1124e
 
 
 
2cff12a
 
 
 
 
 
 
3f1124e
 
2cff12a
 
 
 
 
 
 
 
 
3f1124e
 
 
2cff12a
 
 
 
 
 
 
3f1124e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cff12a
3f1124e
 
 
 
2cff12a
 
 
 
88c0383
2cff12a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f1124e
 
 
 
 
 
 
2cff12a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f1124e
2cff12a
 
3f1124e
2cff12a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88c0383
2cff12a
 
 
 
 
 
 
 
 
 
 
 
 
 
88c0383
 
2cff12a
 
 
 
88c0383
2cff12a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f1124e
2cff12a
88c0383
 
 
2cff12a
 
3f1124e
 
2cff12a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88c0383
 
 
2cff12a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88c0383
2cff12a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
from time import time
from io import BytesIO
import torch
import streamlit as st
import streamlit.components.v1 as components
import numpy as np
import torch
import logging
from os import environ
from transformers import OwlViTProcessor, OwlViTForObjectDetection
from bot import Bot, Message
from myscaledb import Client
from classifier import Classifier, prompt2vec, tune, SplitLayer
from query_model import simple_query, topk_obj_query, rev_query
from card_model import card, obj_card, style
from box_utils import postprocess

environ["TOKENIZERS_PARALLELISM"] = "true"

OBJ_DB_NAME = "mqdb_demo.coco_owl_vit_b_32_objects"
IMG_DB_NAME = "mqdb_demo.coco_owl_vit_b_32_images"
MODEL_ID = "google/owlvit-base-patch32"
DIMS = 512

qtime = 0


def build_model(name="google/owlvit-base-patch32"):
    """Model builder function

    Args:
        name (str, optional): Name for HuggingFace OwlViT model. Defaults to "google/owlvit-base-patch32".

    Returns:
        (model, processor): OwlViT model and its processor for both image and text
    """
    device = "cpu"
    if torch.cuda.is_available():
        device = "cuda"
    model = OwlViTForObjectDetection.from_pretrained(name).to(device)
    processor = OwlViTProcessor.from_pretrained(name)
    return model, processor


@st.experimental_singleton(show_spinner=False)
def init_owlvit():
    """Initialize OwlViT Model

    Returns:
        model, processor
    """
    model, processor = build_model(MODEL_ID)
    return model, processor


@st.experimental_singleton(show_spinner=False)
def init_db():
    """Initialize the Database Connection

    Returns:
        meta_field: Meta field that records if an image is viewed or not
        client:     Database connection object
    """
    meta = []
    client = Client(
        url=st.secrets["DB_URL"], user=st.secrets["USER"], password=st.secrets["PASSWD"]
    )
    # We can check if the connection is alive
    assert client.is_alive()
    return meta, client


def refresh_index():
    """Clean the session"""
    del st.session_state["meta"]
    st.session_state.meta = []
    st.session_state.query_num = 0
    logging.info(f"Refresh for '{st.session_state.meta}'")
    # Need to clear singleton function with streamlit API
    init_db.clear()
    # refresh session states
    st.session_state.meta, st.session_state.index = init_db()
    if "clf" in st.session_state:
        del st.session_state.clf
    if "xq" in st.session_state:
        del st.session_state.xq
    if "topk_img_id" in st.session_state:
        del st.session_state.topk_img_id


def query(xq, exclude_list=None):
    """Query matched w.r.t a given vector

    In this part, we will retrieve A LOT OF data from the server,
    including TopK boxes and their embeddings, the counterpart of non-TopK boxes in TopK images.

    Args:
        xq (numpy.ndarray or list of floats): Query vector

    Returns:
        matches: list of Records object. Keys referrring to selected columns group by images.
                 Exclude the user's viewlist.
        img_matches: list of Records object. Containing other non-TopK but hit objects among TopK images.
        side_matches: list of Records object. Containing REAL TopK objects disregard the user's view history
    """
    attempt = 0
    xq = xq
    xq = xq / np.linalg.norm(xq, axis=-1, ord=2, keepdims=True)
    status_bar = [st.empty(), st.empty()]
    status_bar[0].write("Retrieving Another TopK Images...")
    pbar = status_bar[1].progress(0)
    while attempt < 3:
        try:
            matches = topk_obj_query(
                st.session_state.index,
                xq,
                IMG_DB_NAME,
                OBJ_DB_NAME,
                exclude_list=exclude_list,
                topk=5000,
            )
            img_ids = [r["img_id"] for r in matches]
            if "topk_img_id" not in st.session_state:
                st.session_state.topk_img_id = img_ids
            status_bar[0].write("Retrieving TopK Images...")
            pbar.progress(25)
            o_matches = rev_query(
                st.session_state.index,
                xq,
                st.session_state.topk_img_id,
                IMG_DB_NAME,
                OBJ_DB_NAME,
                thresh=0.1,
            )
            status_bar[0].write("Retrieving TopKs Objects...")
            pbar.progress(50)
            side_matches = simple_query(
                st.session_state.index,
                xq,
                IMG_DB_NAME,
                OBJ_DB_NAME,
                thresh=-1,
                topk=5000,
            )
            status_bar[0].write("Retrieving Non-TopK in Another TopK Images...")
            pbar.progress(75)
            if len(img_ids) > 0:
                img_matches = rev_query(
                    st.session_state.index,
                    xq,
                    img_ids,
                    IMG_DB_NAME,
                    OBJ_DB_NAME,
                    thresh=0.1,
                )
            else:
                img_matches = []
            status_bar[0].write("DONE!")
            pbar.progress(100)
            break
        except Exception as e:
            # force reload if we have trouble on connections or something else
            logging.warning(str(e))
            st.session_state.meta, st.session_state.index = init_db()
            attempt += 1
            matches = []
    _ = [s.empty() for s in status_bar]
    if len(matches) == 0:
        logging.error(f"No matches found for '{OBJ_DB_NAME}'")
    return matches, img_matches, side_matches, o_matches


@st.experimental_singleton(show_spinner=False)
def init_random_query():
    """Initialize a random query vector

    Returns:
        xq: a random vector
    """
    xq = np.random.rand(1, DIMS)
    xq /= np.linalg.norm(xq, keepdims=True, axis=-1)
    return xq


def submit(meta):
    """Tune the model w.r.t given score from user."""
    # Only updating the meta if the train button is pressed
    st.session_state.meta.extend(meta)
    st.session_state.step += 1
    matches = st.session_state.matched_boxes
    X, y = list(
        zip(
            *(
                (
                    v[0],
                    st.session_state.text_prompts.index(st.session_state[f"label-{i}"]),
                )
                for i, v in matches.items()
            )
        )
    )
    st.session_state.xq = tune(
        st.session_state.clf, X, y, iters=int(st.session_state.iters)
    )
    (
        st.session_state.matches,
        st.session_state.img_matches,
        st.session_state.side_matches,
        st.session_state.o_matches,
    ) = query(st.session_state.xq, st.session_state.meta)


# st.set_page_config(layout="wide")
# To hack the streamlit style we define our own style.
# Boxes are drawn in SVGs.
st.write(style(), unsafe_allow_html=True)

bot = Bot(app_name="HF OwlViT", enabled=True, bot_key=st.secrets['BOT_KEY'])
try:
    with st.spinner("Connecting DB..."):
        st.session_state.meta, st.session_state.index = init_db()

    with st.spinner("Loading Models..."):
        # Initialize model
        model, tokenizer = init_owlvit()
    # If its a fresh start... (query not set)
    if "xq" not in st.session_state:
        with st.container():
            st.title("Object Detection Safari")
            start = [st.empty() for _ in range(8)]
            start[0].info(
                """
                        We extracted boxes from **287,104** images in COCO Dataset, including its train / val / test / 
                        unlabeled images, collecting **165,371,904 boxes** which are then filtered with common prompts. 
                        You can search with almost any words or phrases you can think of. Please enjoy your journey of 
                        an adventure to COCO.
                        """
            )
            prompt = start[1].text_input(
                "Prompt:",
                value="",
                placeholder="Examples: football, billboard, stop sign, watermark ...",
            )
            with start[2].container():
                st.write(
                    "You can search with multiple keywords. Plese separate with commas but with no space."
                )
                st.write("For example: `cat,dog,tree`")
                st.markdown(
                    """
                            <p style="color:gray;"> Don\'t know what to search? Try <b>Random</b>!</p>
                            """,
                    unsafe_allow_html=True,
                )

            upld_model = start[4].file_uploader(
                "Or you can upload your previous run!", type="onnx"
            )
            upld_btn = start[5].button(
                "Use Loaded Weights", disabled=upld_model is None, on_click=refresh_index
            )

            with start[3]:
                col = st.columns(8)
                has_no_prompt = len(prompt) == 0 and upld_model is None
                prompt_xq = col[6].button(
                    "Prompt", disabled=len(prompt) == 0, on_click=refresh_index
                )
                random_xq = col[7].button(
                    "Random", disabled=not has_no_prompt, on_click=refresh_index
                )
            matches = []
            img_matches = []
            if random_xq:
                xq = init_random_query()
                st.session_state.xq = xq
                prompt = "unknown"
                st.session_state.text_prompts = prompt.split(",") + ["none"]
                _ = [elem.empty() for elem in start]
                t0 = time()
                (
                    st.session_state.matches,
                    st.session_state.img_matches,
                    st.session_state.side_matches,
                    st.session_state.o_matches,
                ) = query(st.session_state.xq, st.session_state.meta)
                t1 = time()
                qtime = (t1 - t0) * 1000
            elif prompt_xq or upld_btn:
                if upld_model is not None:
                    import onnx
                    from onnx import numpy_helper

                    _model = onnx.load(upld_model)
                    st.session_state.text_prompts = [
                        node.name for node in _model.graph.output
                    ] + ["none"]
                    weights = _model.graph.initializer
                    xq = numpy_helper.to_array(weights[0]).T
                    assert (
                        xq.shape[0] == len(st.session_state.text_prompts) - 1
                        and xq.shape[1] == DIMS
                    )
                    st.session_state.xq = xq
                    _ = [elem.empty() for elem in start]
                else:
                    logging.info(f"Input prompt is {prompt}")
                    st.session_state.text_prompts = prompt.split(",") + ["none"]
                    input_ids, xq = prompt2vec(
                        st.session_state.text_prompts[:-1], model, tokenizer
                    )
                    st.session_state.xq = xq
                    _ = [elem.empty() for elem in start]
                t0 = time()
                (
                    st.session_state.matches,
                    st.session_state.img_matches,
                    st.session_state.side_matches,
                    st.session_state.o_matches,
                ) = query(st.session_state.xq, st.session_state.meta)
                t1 = time()
                qtime = (t1 - t0) * 1000

    # If its not a fresh start (query is set)
    if "xq" in st.session_state:
        o_matches = st.session_state.o_matches
        side_matches = st.session_state.side_matches
        img_matches = st.session_state.img_matches
        matches = st.session_state.matches
        # initialize classifier
        if "clf" not in st.session_state:
            st.session_state.clf = Classifier(st.session_state.index, OBJ_DB_NAME, st.session_state.xq)
            st.session_state.step = 0
        if qtime > 0:
            st.info(
                "Query done in {0:.2f} ms and returned {1:d} images with {2:d} boxes".format(
                    qtime,
                    len(matches),
                    sum(
                        [
                            len(m["box_id"]) + len(im["box_id"])
                            for m, im in zip(matches, img_matches)
                        ]
                    ),
                )
            )
        lnprob = torch.nn.Linear(st.session_state.xq.shape[1], st.session_state.xq.shape[0], bias=False)
        lnprob.weight = torch.nn.Parameter(st.session_state.clf.weight)

        # export the model into executable ONNX
        st.session_state.dnld_model = BytesIO()
        torch.onnx.export(
            torch.nn.Sequential(lnprob, SplitLayer()),
            torch.zeros([1, len(st.session_state.xq[0])]),
            st.session_state.dnld_model,
            input_names=["input"],
            output_names=st.session_state.text_prompts[:-1],
        )

        dnld_nam = st.text_input(
            "Download Name:",
            f'{("_".join([i.replace(" ", "-") for i in st.session_state.text_prompts[:-1]]) if "text_prompts" in st.session_state else "model")}.onnx',
            max_chars=50,
        )
        dnld_btn = st.download_button(
            "Download your classifier!", st.session_state.dnld_model, dnld_nam
        )
        # build up a sidebar to display REAL TopK in DB
        # this will change during user's finetune. But sometime it would lead to bad results
        side_bar_len = min(240 // len(st.session_state.text_prompts), 120)
        with st.sidebar:
            with st.expander("Top-K Images"):
                with st.container():
                    boxes_w_img, _ = postprocess(
                        o_matches, st.session_state.text_prompts, o_matches, 
                        agnostic_ratio=1-0.6**(st.session_state.step+1), 
                        class_ratio=1-0.2**(st.session_state.step+1)
                    )
                    boxes_w_img = sorted(boxes_w_img, key=lambda x: x[4], reverse=True)
                    for img_id, img_url, img_w, img_h, img_score, boxes in boxes_w_img:
                        args = img_url, img_w, img_h, boxes
                        st.write(card(*args), unsafe_allow_html=True)

            with st.expander("Top-K Objects", expanded=True):
                side_cols = st.columns(len(st.session_state.text_prompts[:-1]))
                for _cols, m in zip(side_cols, side_matches):
                    with _cols.container():
                        for cx, cy, w, h, logit, img_url, img_w, img_h in zip(
                            m["cx"],
                            m["cy"],
                            m["w"],
                            m["h"],
                            m["logit"],
                            m["img_url"],
                            m["img_w"],
                            m["img_h"],
                        ):
                            st.write(
                                "{:s}: {:.4f}".format(
                                    st.session_state.text_prompts[m["label"]], logit
                                )
                            )
                            _html = obj_card(
                                img_url, img_w, img_h, cx, cy, w, h, dst_len=side_bar_len
                            )
                            components.html(_html, side_bar_len, side_bar_len)
        with st.container():
            # Here let the user interact with batch labeling
            with st.form("batch", clear_on_submit=False):
                col = st.columns([1, 9])

                # If there is nothing to show about
                if len(matches) <= 0:
                    st.warning(
                        "Oops! We didn't find anything relevant to your query! Pleas try another one :/"
                    )
                else:
                    st.session_state.iters = st.slider(
                        "Number of Iterations to Update",
                        min_value=0,
                        max_value=10,
                        step=1,
                        value=2,
                    )
                # No matter what happened the user wants a way back
                col[1].form_submit_button("Choose a new prompt", on_click=refresh_index)

                # If there are things to show
                if len(matches) > 0:
                    with st.container():
                        prompt_labels = st.session_state.text_prompts

                        # Post processing boxes regarding to their score, intersection
                        boxes_w_img, meta = postprocess(
                            matches, st.session_state.text_prompts, img_matches, 
                            agnostic_ratio=1-0.6**(st.session_state.step+1), 
                            class_ratio=1-0.2**(st.session_state.step+1)
                        )

                        # Sort the result according to their relavancy
                        boxes_w_img = sorted(boxes_w_img, key=lambda x: x[4], reverse=True)

                        st.session_state.matched_boxes = {}
                        # For each images in the retrieved images, DISPLAY
                        for img_id, img_url, img_w, img_h, img_score, boxes in boxes_w_img:

                            # prepare inputs for training
                            st.session_state.matched_boxes.update({b[0]: b for b in boxes})
                            args = img_url, img_w, img_h, boxes

                            # display boxes
                            with st.expander(
                                "{:s}: {:.4f}".format(img_id, img_score), expanded=True
                            ):
                                ind_b = 0
                                # 4 columns: (img, obj, obj, obj)
                                img_row = st.columns([4, 2, 2, 2])
                                img_row[0].write(card(*args), unsafe_allow_html=True)
                                # crop objects out of the original image
                                for b in boxes:
                                    _id, cx, cy, w, h, label, logit, is_selected = b[:8]
                                    with img_row[1 + ind_b % 3].container():
                                        st.write("{:s}: {:.4f}".format(label, logit))
                                        # quite hacky: with streamlit components API
                                        _html = obj_card(
                                            img_url, img_w, img_h, *b[1:5], dst_len=120
                                        )
                                        components.html(_html, 120, 120)
                                        # the user will choose the right label of the given object
                                        st.selectbox(
                                            "Class",
                                            prompt_labels,
                                            index=prompt_labels.index(label),
                                            key=f"label-{_id}",
                                        )
                                    ind_b += 1
                    col[0].form_submit_button("Train!", on_click=lambda: submit(meta))
except Exception as e:
    msg = Message()
    msg.content = str(e.with_traceback(None))
    msg.type_hint = str(type(e).__name__)
    bot.incident(msg)