myshirk's picture
Update app.py
aea57ec
import streamlit as st
from sentence_transformers import SentenceTransformer, util
from bs4 import BeautifulSoup
import pandas as pd
import requests
import os
import time
def find_abstracts(soup):
#df = pd.DataFrame(columns = ["identifier", "abstract"])
id_list = []
abs_list = []
title_list = []
for record in soup.find_all("csw:record"):
id = record.find("dc:identifier")
abs = record.find("dct:abstract")
title = record.find("dc:title")
# append id and abs to df
#df = df.append([id.text, abs.text])
id_list.append(id.text)
title_list.append(title.text)
if abs != None:
abs_list.append(abs.text)
else:
abs_list.append("NA")
return id_list, title_list, abs_list
def get_metadata():
# Get the abstracts from Geoportal
URL = "https://www.ncei.noaa.gov/metadata/geoportal/opensearch?f=csw&from=0&size=5000&sort=title.sort"
page = requests.get(URL)
soup = BeautifulSoup(page.text, "lxml")
id_list, title_list, abs_list = find_abstracts(soup)
df = pd.DataFrame(list(zip(id_list,title_list, abs_list)), columns = ["identifier", "title", "abstract"])
df.to_csv("./ncei-metadata.csv")
return df
def show_model(query):
path = "./ncei-metadata.csv"
if os.path.exists(path):
last_modified = os.path.getmtime(path)
now = time.time()
DAY = 86400
if (now - last_modified > DAY):
df = get_metadata()
else:
df = pd.read_csv(path)
else:
df = get_metadata()
# Make the abstracts the docs
docs_df = df[df["abstract"] != "NA"]
docs = list(docs_df["abstract"])
titles = list(docs_df["title"])
# Query
query = input("Enter your query: ")
# predict on a search query for data
#Load the model
model = SentenceTransformer('sentence-transformers/multi-qa-MiniLM-L6-cos-v1')
#Encode query and documents
query_emb = model.encode(query)
doc_emb = model.encode(docs)
#Compute dot score between query and all document embeddings
scores = util.dot_score(query_emb, doc_emb)[0].cpu().tolist()
#Combine docs & scores
doc_score_pairs = list(zip(docs, scores, titles))
#Sort by decreasing score
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
return doc_score_pairs
def main():
st.title("Semantic Search for Datasets Using Sentence Transformers")
st.write("A case study for the National Centers for Environmental Information (NCEI)")
st.image("noaa_logo.png", width=150)
st.write("## Goal: search for datasets in NCEI's Archive using natural language queries")
st.write("[Repo](https://github.com/myrandaGoesToSpace/semantic-search-datasets)")
st.image("pres-whatisnoaa.png")
st.write("## The Problem Context")
st.write("Uses service called OneStop for data search")
st.write("**Problems:**")
st.write("- Uses keyword search -- not robust to natural language queries")
st.write("- Filtering options too specific for non-expert users")
#st.image("pres-onestop.png")
#st.image("pres-problems.png")
st.write("## The Model: [Sentence Transformers](https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1)")
st.image("pres-sentencetransformers.png")
st.write("## Project Data")
st.image("pres-metadata.png")
st.write("## The Process")
st.image("pres-creatingse.png")
st.write("## Results and Demo")
st.write("[Demo Notebook](https://github.com/myrandaGoesToSpace/semantic-search-datasets/blob/main/semantic_search.ipynb)")
st.image("pres-futureplans.png")
st.write("## Critical Analysis")
st.write("- did not run with Streamlit text input")
st.write("- only embeds the first 5000 datasets")
st.write("- calculates embeddings for datasets with each run")
main()