Spaces:
Sleeping
Sleeping
File size: 6,315 Bytes
dd4ac10 d9db28b 3116e29 dd4ac10 3116e29 d9db28b dd4ac10 d9db28b dd4ac10 d9db28b dd4ac10 3116e29 d9db28b 3116e29 dd4ac10 d9db28b dd4ac10 d9db28b 3116e29 d9db28b dd4ac10 d9db28b 3116e29 dd4ac10 d9db28b dd4ac10 d9db28b dd4ac10 d9db28b dd4ac10 d9db28b dd4ac10 d9db28b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import ast
import astor
import traceback
# Initialize Hugging Face model and tokenizer
MODEL_NAME = "microsoft/codebert-base"
# Load the pre-trained CodeBERT model for understanding code
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
# Helper function to analyze code
def analyze_code(code):
# Split the code into manageable chunks
max_length = 512
lines = code.split("\n")
chunks = ["\n".join(lines[i:i+max_length]) for i in range(0, len(lines), max_length)]
results = []
for chunk in chunks:
tokenized_code = tokenizer(chunk, return_tensors="pt", truncation=True, max_length=max_length)
outputs = model(**tokenized_code)
logits = outputs.logits
results.append(logits.argmax(dim=1).item())
return results
# Function to detect and fix bugs, including logical errors
def detect_and_fix_bugs(code):
suggestions = []
fixed_code = code
try:
tree = ast.parse(code)
# Detect undefined variable usage
for node in ast.walk(tree):
if isinstance(node, ast.Name) and isinstance(node.ctx, ast.Load):
if node.id not in {n.id for n in ast.walk(tree) if isinstance(n, ast.Name) and isinstance(n.ctx, ast.Store)}:
suggestions.append(f"Variable '{node.id}' is used but not defined.")
undefined_variables = [
node.id for node in ast.walk(tree)
if isinstance(node, ast.Name) and isinstance(node.ctx, ast.Load) and
node.id not in {n.id for n in ast.walk(tree) if isinstance(n, ast.Name) and isinstance(n.ctx, ast.Store)}
]
for var in undefined_variables:
fix_statement = ast.Assign(targets=[ast.Name(id=var, ctx=ast.Store())], value=ast.Constant(value=None))
tree.body.insert(0, fix_statement)
suggestions.append(f"Added a definition for variable '{var}'.")
# Detect unused variables
assigned_vars = {n.id for n in ast.walk(tree) if isinstance(n, ast.Name) and isinstance(n.ctx, ast.Store)}
used_vars = {n.id for n in ast.walk(tree) if isinstance(n, ast.Name) and isinstance(n.ctx, ast.Load)}
unused_vars = assigned_vars - used_vars
for var in unused_vars:
suggestions.append(f"Variable '{var}' is defined but never used.")
# Detect missing imports
import_names = {n.name for n in ast.walk(tree) if isinstance(n, ast.Import)}
for node in ast.walk(tree):
if isinstance(node, ast.Call) and hasattr(node.func, 'id') and node.func.id not in import_names:
suggestions.append(f"Missing import for '{node.func.id}'.")
# Detect invalid function calls
for node in ast.walk(tree):
if isinstance(node, ast.Call):
if isinstance(node.func, ast.Name):
if not any(isinstance(n, ast.FunctionDef) and n.name == node.func.id for n in ast.walk(tree)):
suggestions.append(f"Function '{node.func.id}' is called but not defined.")
# Detect type mismatches (example: adding string to integer)
for node in ast.walk(tree):
if isinstance(node, ast.BinOp):
left = node.left
right = node.right
if isinstance(left, ast.Constant) and isinstance(right, ast.Constant):
if type(left.value) != type(right.value):
suggestions.append(f"Type mismatch in operation: '{left.value}' ({type(left.value).__name__}) and '{right.value}' ({type(right.value).__name__}).")
# Detect logical errors (example: unreachable code)
for i, node in enumerate(tree.body):
if isinstance(node, ast.If):
if isinstance(node.test, ast.Constant) and node.test.value is False:
suggestions.append(f"Unreachable code detected at line {node.lineno}.")
elif isinstance(node.test, ast.Constant) and node.test.value is True:
suggestions.append(f"Redundant condition always True at line {node.lineno}.")
# Detect duplicate keys in dictionaries
for node in ast.walk(tree):
if isinstance(node, ast.Dict):
keys = [k.value for k in node.keys if isinstance(k, ast.Constant)]
if len(keys) != len(set(keys)):
suggestions.append("Duplicate keys detected in dictionary.")
# Convert the modified AST back to code
fixed_code = astor.to_source(tree)
except Exception as e:
suggestions.append(f"Error analyzing code: {traceback.format_exc()}")
return suggestions, fixed_code
# Streamlit app UI
st.title("Code Quality, Bug Detection, and Auto-Correction Tool")
st.markdown("Analyze your code for syntax issues, quality, bugs, logical errors, and get suggested corrections.")
# File uploader
uploaded_file = st.file_uploader("Upload a Python code file", type=["py"])
# Code snippet input
code_snippet = st.text_area("Or paste your code snippet below:")
if st.button("Analyze and Fix Code"):
if uploaded_file is not None:
code = uploaded_file.read().decode("utf-8")
elif code_snippet.strip():
code = code_snippet
else:
st.error("Please upload a file or paste code to analyze.")
st.stop()
# Perform code analysis and bug fixing
st.subheader("Analysis Results")
st.write("**Code Quality and Bug Suggestions:**")
suggestions, fixed_code = detect_and_fix_bugs(code)
if suggestions:
for i, suggestion in enumerate(suggestions, 1):
st.write(f"{i}. {suggestion}")
else:
st.write("No major issues detected. Your code looks good!")
# Display corrected code
st.subheader("Corrected Code:")
st.code(fixed_code, language="python")
# Simulated CodeBERT analysis (placeholder)
st.write("**Model Analysis:**")
model_results = analyze_code(code)
for idx, result in enumerate(model_results, 1):
st.write(f"Chunk {idx} classification result: {result}")
st.markdown("---")
st.markdown("*Powered by Hugging Face and Streamlit*")
|