import torch from torch import nn import torch.nn.functional as F class NeuralNetwork(nn.Module): def __init__(self): super().__init__() n_filters = 64 self.conv_1 = nn.Conv1d( 1, n_filters, 8, stride=1, padding='same') self.norm_1 = nn.BatchNorm1d(n_filters) self.conv_2 = nn.Conv1d(n_filters, n_filters, 5, stride=1, padding='same') self.norm_2 = nn.BatchNorm1d(n_filters) self.conv_3 = nn.Conv1d(n_filters, n_filters, 3, stride=1, padding='same') self.norm_3 = nn.BatchNorm1d(n_filters) self.conv_4 = nn.Conv1d( 1, n_filters, 1, stride=1, padding='same') # Expanding for addition self.norm_4 = nn.BatchNorm1d(n_filters) self.conv_5 = nn.Conv1d( n_filters, n_filters*2, 8, stride=1, padding='same') self.norm_5 = nn.BatchNorm1d(n_filters*2) self.conv_6 = nn.Conv1d(n_filters*2, n_filters*2, 5, stride=1, padding='same') self.norm_6 = nn.BatchNorm1d(n_filters*2) self.conv_7 = nn.Conv1d(n_filters*2, n_filters*2, 3, stride=1, padding='same') self.norm_7 = nn.BatchNorm1d(n_filters*2) self.conv_8 = nn.Conv1d( n_filters, n_filters*2, 1, stride=1, padding='same') self.norm_8 = nn.BatchNorm1d(n_filters*2) self.conv_9 = nn.Conv1d(n_filters*2, n_filters*2, 8, stride=1, padding='same') self.norm_9 = nn.BatchNorm1d(n_filters*2) self.conv_10 = nn.Conv1d(n_filters*2, n_filters*2, 5, stride=1, padding='same') self.norm_10 = nn.BatchNorm1d(n_filters*2) self.conv_11 = nn.Conv1d(n_filters*2, n_filters*2, 3, stride=1, padding='same') self.norm_11 = nn.BatchNorm1d(n_filters*2) # self.conv_12 = nn.Conv1d(n_filters*2, n_filters*2, 1, stride=1, padding='same') self.norm_12 = nn.BatchNorm1d(n_filters*2) self.classifier = nn.Linear(128, 7) self.log_softmax = nn.LogSoftmax(dim=1) def forward(self, x): x = x.float() # Block 1 a = self.conv_1(x) a = self.norm_1(a) a = F.relu(a) b = self.conv_2(a) b = self.norm_2(b) b = F.relu(b) c = self.conv_3(b) c = self.norm_3(c) shortcut = self.conv_4(x) shortcut = self.norm_4(shortcut) output_1 = torch.add(c, shortcut) output_1 = F.relu(output_1) #Block 2 a = self.conv_5(output_1) a = self.norm_5(a) a = F.relu(a) b = self.conv_6(a) b = self.norm_6(b) b = F.relu(b) c = self.conv_7(b) c = self.norm_7(c) shortcut = self.conv_8(output_1) shortcut = self.norm_8(shortcut) output_2 = torch.add(c, shortcut) output_2 = F.relu(output_2) #Block 3 a = self.conv_9(output_2) a = self.norm_9(a) a = F.relu(a) b = self.conv_10(a) b = self.norm_10(b) b = F.relu(b) c = self.conv_11(b) c = self.norm_11(c) # shortcut = self.conv_12(output_2) shortcut = self.norm_12(shortcut) output_3 = torch.add(c, shortcut) output_3 = F.relu(output_3) logits = self.classifier(output_3.mean((2,))) res = self.log_softmax(logits) return res