Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import T5ForConditionalGeneration, AutoTokenizer, RobertaTokenizer,AutoModelForCausalLM,pipeline,TrainingArguments | |
models=[ | |
"nadiamaqbool81/starcoderbase-1b-hf", | |
"nadiamaqbool81/starcoderbase-1b-hf_python", | |
"nadiamaqbool81/codet5-large-hf", | |
"nadiamaqbool81/codet5-large-hf-python", | |
"nadiamaqbool81/llama-2-7b-int4-java-code-1.178k", | |
"nadiamaqbool81/llama-2-7b-int4-python-code-510" | |
] | |
names=[ | |
"nadiamaqbool81/starcoderbase-java", | |
"nadiamaqbool81/starcoderbase-python", | |
"nadiamaqbool81/codet5-java", | |
"nadiamaqbool81/codet5-python", | |
"nadiamaqbool81/llama-2-java", | |
"nadiamaqbool81/llama-2-python" | |
] | |
model_box=[ | |
gr.load(f"models/{models[0]}"), | |
gr.load(f"models/{models[1]}"), | |
gr.load(f"models/{models[2]}"), | |
gr.load(f"models/{models[3]}"), | |
gr.load(f"models/{models[4]}"), | |
gr.load(f"models/{models[5]}"), | |
] | |
current_model=model_box[0] | |
pythonFlag = "false" | |
javaFlag = "false" | |
def the_process(input_text, model_choice): | |
global pythonFlag | |
global javaFlag | |
print("Inside the_process for python 0", pythonFlag) | |
global output | |
print("Inside the_process for python 1", model_choice) | |
if(model_choice==1): | |
if(pythonFlag == "false"): | |
print("Inside starcoder for python") | |
tokenizer = AutoTokenizer.from_pretrained("nadiamaqbool81/starcoderbase-1b-hf_python") | |
model = AutoModelForCausalLM.from_pretrained("nadiamaqbool81/starcoderbase-1b-hf_python") | |
output = run_predict(input_text, model, tokenizer) | |
print("output starcoder python" , output) | |
elif(model_choice==0): | |
if(javaFlag == "false"): | |
print("Inside starcoder for java") | |
tokenizer = AutoTokenizer.from_pretrained("nadiamaqbool81/starcoderbase-1b-hf") | |
model = AutoModelForCausalLM.from_pretrained("nadiamaqbool81/starcoderbase-1b-hf") | |
output = run_predict(input_text, model, tokenizer) | |
print("output starcoder java" , output) | |
else: | |
a_variable = model_box[model_choice] | |
output = a_variable(input_text) | |
print("output other" , output) | |
return(output) | |
def run_predict(text, model, tokenizer): | |
prompt = text | |
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=400) | |
result = pipe(f"<s>[INST] {prompt} [/INST]") | |
arr = result[0]['generated_text'].split('[/INST]') | |
return arr[1] | |
gr.HTML("""<h1 style="font-weight:600;font-size:50;margin-top:4px;margin-bottom:4px;text-align:center;">Text to Code Generation</h1></div>""") | |
model_choice = gr.Dropdown(label="Select Model", choices=[m for m in names], type="index", interactive=True) | |
input_text = gr.Textbox(label="Input Prompt") | |
output_window = gr.Code(label="Generated Code") | |
interface = gr.Interface(fn=the_process, inputs=[input_text, model_choice], outputs="text") | |
interface.launch(debug=True) |