nadiamaqbool81 commited on
Commit
61c8232
1 Parent(s): bdca389

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -78
app.py CHANGED
@@ -1,78 +0,0 @@
1
- import gradio as gr
2
-
3
-
4
- from transformers import T5ForConditionalGeneration, AutoTokenizer, RobertaTokenizer,AutoModelForCausalLM,pipeline,TrainingArguments
5
-
6
-
7
- models=[
8
- "nadiamaqbool81/starcoderbase-1b-hf",
9
- "nadiamaqbool81/starcoderbase-1b-hf_python",
10
- "nadiamaqbool81/codet5-large-hf",
11
- "nadiamaqbool81/codet5-large-hf-python",
12
- "nadiamaqbool81/llama-2-7b-int4-java-code-1.178k",
13
- "nadiamaqbool81/llama-2-7b-int4-python-code-510"
14
- ]
15
- names=[
16
- "nadiamaqbool81/starcoderbase-java",
17
- "nadiamaqbool81/starcoderbase-python",
18
- "nadiamaqbool81/codet5-java",
19
- "nadiamaqbool81/codet5-python",
20
- "nadiamaqbool81/llama-2-java",
21
- "nadiamaqbool81/llama-2-python"
22
- ]
23
- model_box=[
24
- gr.load(f"models/{models[0]}"),
25
- gr.load(f"models/{models[1]}"),
26
- gr.load(f"models/{models[2]}"),
27
- gr.load(f"models/{models[3]}"),
28
- gr.load(f"models/{models[4]}"),
29
- gr.load(f"models/{models[5]}"),
30
- ]
31
- current_model=model_box[0]
32
- pythonFlag = "false"
33
- javaFlag = "false"
34
-
35
-
36
-
37
- def the_process(input_text, model_choice):
38
- global pythonFlag
39
- global javaFlag
40
- print("Inside the_process for python 0", pythonFlag)
41
- global output
42
- print("Inside the_process for python 1", model_choice)
43
- if(model_choice==1):
44
- if(pythonFlag == "false"):
45
- print("Inside starcoder for python")
46
- tokenizer = AutoTokenizer.from_pretrained("nadiamaqbool81/starcoderbase-1b-hf_python")
47
- model = AutoModelForCausalLM.from_pretrained("nadiamaqbool81/starcoderbase-1b-hf_python")
48
- output = run_predict(input_text, model, tokenizer)
49
- print("output starcoder python" , output)
50
- elif(model_choice==0):
51
- if(javaFlag == "false"):
52
- print("Inside starcoder for java")
53
- tokenizer = AutoTokenizer.from_pretrained("nadiamaqbool81/starcoderbase-1b-hf")
54
- model = AutoModelForCausalLM.from_pretrained("nadiamaqbool81/starcoderbase-1b-hf")
55
- output = run_predict(input_text, model, tokenizer)
56
- print("output starcoder java" , output)
57
- else:
58
- a_variable = model_box[model_choice]
59
- output = a_variable(input_text)
60
- print("output other" , output)
61
- return(output)
62
-
63
-
64
- def run_predict(text, model, tokenizer):
65
- prompt = text
66
- pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=400)
67
- result = pipe(f"<s>[INST] {prompt} [/INST]")
68
- arr = result[0]['generated_text'].split('[/INST]')
69
- return arr[1]
70
-
71
-
72
- gr.HTML("""<h1 style="font-weight:600;font-size:50;margin-top:4px;margin-bottom:4px;text-align:center;">Text to Code Generation</h1></div>""")
73
- model_choice = gr.Dropdown(label="Select Model", choices=[m for m in names], type="index", interactive=True)
74
- input_text = gr.Textbox(label="Input Prompt")
75
- output_window = gr.Code(label="Generated Code")
76
-
77
- interface = gr.Interface(fn=the_process, inputs=[input_text, model_choice], outputs="text")
78
- interface.launch(debug=True)