import gradio as gr import torch from transformers import T5ForConditionalGeneration, AutoTokenizer, RobertaTokenizer,AutoModelForCausalLM,pipeline,TrainingArguments models=[ "nadiamaqbool81/starcoderbase-1b-hf", "nadiamaqbool81/starcoderbase-1b-hf_python", "nadiamaqbool81/codet5-large-hf", "nadiamaqbool81/codet5-large-hf-python", "nadiamaqbool81/llama-2-7b-int4-java-code-1.178k", "nadiamaqbool81/llama-2-7b-int4-python-code-510" ] names=[ "nadiamaqbool81/starcoderbase-java", "nadiamaqbool81/starcoderbase-python", "nadiamaqbool81/codet5-java", "nadiamaqbool81/codet5-python", "nadiamaqbool81/llama-2-java", "nadiamaqbool81/llama-2-python" ] model_box=[ gr.load(f"models/{models[0]}"), gr.load(f"models/{models[1]}"), gr.load(f"models/{models[2]}"), gr.load(f"models/{models[3]}"), gr.load(f"models/{models[4]}"), gr.load(f"models/{models[5]}"), ] current_model=model_box[0] pythonFlag = "false" javaFlag = "false" def the_process(input_text, model_choice): global pythonFlag global javaFlag print("Inside the_process for python 0", pythonFlag) global output print("Inside the_process for python 1", model_choice) if(model_choice==1): if(pythonFlag == "false"): print("Inside starcoder for python") tokenizer = AutoTokenizer.from_pretrained("nadiamaqbool81/starcoderbase-1b-hf_python") model = AutoModelForCausalLM.from_pretrained("nadiamaqbool81/starcoderbase-1b-hf_python") output = run_predict(input_text, model, tokenizer) print("output starcoder python" , output) elif(model_choice==0): if(javaFlag == "false"): print("Inside starcoder for java") tokenizer = AutoTokenizer.from_pretrained("nadiamaqbool81/starcoderbase-1b-hf") model = AutoModelForCausalLM.from_pretrained("nadiamaqbool81/starcoderbase-1b-hf") output = run_predict(input_text, model, tokenizer) print("output starcoder java" , output) else: a_variable = model_box[model_choice] output = a_variable(input_text) print("output other" , output) return(output) def run_predict(text, model, tokenizer): prompt = text pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=400) result = pipe(f"[INST] {prompt} [/INST]") arr = result[0]['generated_text'].split('[/INST]') return arr[1] gr.HTML("""

Text to Code Generation

""") model_choice = gr.Dropdown(label="Select Model", choices=[m for m in names], type="index", interactive=True) input_text = gr.Textbox(label="Input Prompt") output_window = gr.Code(label="Generated Code") interface = gr.Interface(fn=the_process, inputs=[input_text, model_choice], outputs="text") interface.launch(debug=True)