File size: 6,492 Bytes
59aa281
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c796c98
 
 
 
 
 
 
 
 
 
 
59aa281
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2828e6
59aa281
 
 
d2828e6
 
59aa281
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import torch
import pytube as pt
import torchaudio

import gradio as gr
import yt_dlp as youtube_dl
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
from pyannote.audio import Pipeline
from pydub import AudioSegment
import pandas as pd
from tqdm import tqdm
import shutil

device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32


# Load model directly
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq

from transformers import (
    AutomaticSpeechRecognitionPipeline,
    WhisperForConditionalGeneration,
    WhisperTokenizer,
    WhisperProcessor,
)

import tempfile
import time
import os

from moviepy.editor import *

MODEL_NAME = "nadsoft/hamsa-v0.2-beta"
BATCH_SIZE = 8
FILE_LIMIT_MB = 1000
YT_LENGTH_LIMIT_S = 3600  # limit to 1 hour YouTube files
lang = 'ar'
device = 0 if torch.cuda.is_available() else "cpu"
auth_token = os.environ.get("auth_token")

language = "arabic"
task = "transcribe"

file1 = 'meet.mp4'
file2 = 'audio.wav'
file3 = 'result.csv'
file4 = 'transcripts.csv'

#delete the file if exists
if os.path.exists(file1):
    os.remove(file1)
if os.path.exists(file2):
    os.remove(file2)


model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME,use_auth_token=auth_token)
tokenizer = WhisperTokenizer.from_pretrained(MODEL_NAME, language=language, task=task,use_auth_token=auth_token)
processor = WhisperProcessor.from_pretrained(MODEL_NAME, language=language, task=task,use_auth_token=auth_token)
feature_extractor = processor.feature_extractor
forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task=task)


pipe = pipeline(
    task="automatic-speech-recognition",
    model=model,
    tokenizer=tokenizer,
    feature_extractor=feature_extractor,
    chunk_length_s=30,
    device=device,
)

pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")

def speaker_diarization():
    pipeline = Pipeline.from_pretrained(
    "pyannote/speaker-diarization-3.1",
    use_auth_token=str(auth_token), # optional)
    ).to(torch.device("cuda"))

    # send pipeline to GPU (when available)

    waveform, sample_rate = torchaudio.load('audio.wav')
    diarization = pipeline({"waveform": waveform, "sample_rate": sample_rate})
    df = pd.DataFrame(columns=['start', 'stop', 'speaker'])
    for turn, _, speaker in diarization.itertracks(yield_label=True):
        df = df.append({'start': turn.start, 'stop': turn.end, 'speaker': speaker}, ignore_index=True)

    # if the speaker is the same for 2 rows or more then merge them
    new_df = pd.DataFrame(columns=['start', 'stop', 'speaker'])
    for i in range(len(df)):
        if i == 0:
            new_df = new_df.append({'start': df['start'][i], 'stop': df['stop'][i], 'speaker': df['speaker'][i]}, ignore_index=True)
        else:
            if df['speaker'][i] == df['speaker'][i-1]:
                new_df['stop'][len(new_df)-1] = df['stop'][i]
            else:
                new_df = new_df.append({'start': df['start'][i], 'stop': df['stop'][i], 'speaker': df['speaker'][i]}, ignore_index=True)
    new_df.to_csv('result.csv', index=False)

def save_audio_chunks(data_path, new_df):
    # load the audio file
    audio = AudioSegment.from_wav('audio.wav')
    # save each chunk
    for i in tqdm(range(len(new_df))):
        start = new_df['start'][i]* 1000
        stop = new_df['stop'][i]* 1000
        audio_chunk = audio[start:stop]
        audio_chunk.export(data_path + '/audio_'+new_df['speaker'][i] + '_'+ str(i) + '.wav', format="wav")

def download(url):
      os.system('yt-dlp '+url+' -o meet.mp4')


def mp4_2_audio():
    video = VideoFileClip("meet.mp4")
    audio = video.audio
    audio.write_audiofile('audio.wav')

def random_response(message):
    if os.path.exists('data/'):
        shutil.rmtree('data/')
      #delete the file if exists
    if os.path.exists(file1):
        os.remove(file1)
    if os.path.exists(file2):
        os.remove(file2)
    if os.path.exists(file3):
        os.remove(file3)
    if os.path.exists(file4):
        os.remove(file4)

    download(message)
    mp4_2_audio()
    full_transcript = pipe('audio.wav')['text']
    print('full trans : ', full_transcript )

    data_path = 'data'
    #check if the folder exists
    if not os.path.exists(data_path):
        os.makedirs(data_path)
    speaker_diarization()
    df = pd.read_csv('result.csv')
    #get all the speakers and 
    speakers = df['speaker'].unique()
    #create a new dataframe speaker and transcript
    new_df = pd.DataFrame(columns=['speaker', 'transcript','index'])
    # save the audio chunks
    save_audio_chunks(data_path, df)
    # for each speaker
    speakers_all = df['speaker'].unique()
    # make a for a list for each speaker audio path from the data folder
    all_audio_files = [audio for audio in os.listdir(data_path) if audio.endswith('.wav')]
    # loop over the audio files and add the speaker and transcript to the new dataframe
    for audio in tqdm(all_audio_files):
        try:
            # get the speaker name the name is (audio_SPEAKER_04_3) the speaker is the second part and the number is the third part and the number after the _ is the index
            speaker = audio.split('_')[1]
            speaker_num = audio.split('_')[2]
            speaker = speaker + '_' + speaker_num
            index = audio.split('_')[3].split('.')[0]
            # get the transcript
            transcript = pipe(data_path + '/' + audio)['text']
        except:
            transcript = "no_text"
        # append to the new dataframe
        new_df = new_df.append({'speaker': speaker, 'transcript': transcript , 'index': index
                                }, ignore_index=True)
        # save the new dataframe
    new_df.to_csv('transcripts.csv', index=False)
    #make sure the index is int and the data sorted by the index from 0 to the end
    new_df['index'] = new_df['index'].astype(int)
    return full_transcript, 'meet.mp4' , new_df.sort_values(by=['index'])

demo = gr.Interface(
        fn=random_response,
        inputs=[gr.Textbox(label='Tiktok Video URL')],
        outputs=[gr.Textbox(rtl = True , text_align = 'rights',label='Full text transcript'),gr.Video(label='Tiktok Video'),gr.Dataframe(label='Speakers')],
        theme=gr.themes.Monochrome(),
    )

if __name__ == "__main__":
    demo.queue().launch(share=True)