Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2023 The GIRT Authors. | |
# Lint as: python3 | |
# This space is built based on AMR-KELEG/ALDi and cis-lmu/GlotLID space. | |
# GIRT Space | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
import streamlit as st | |
import pandas as pd | |
import base64 | |
st.markdown( | |
""" | |
<style> | |
[data-testid="stSidebar"][aria-expanded="true"]{ | |
min-width: 450px; | |
max-width: 450px; | |
} | |
""", | |
unsafe_allow_html=True) | |
with st.sidebar: | |
st.title(" π§ Settings") | |
with st.expander("π Issue Template Inputs", True): | |
in_name = st.text_input("Name Metadata: ", placeholder="e.g., Bug Report or Feqture Request or Question", on_change=None) | |
in_about = st.text_input("About Metadata: ", placeholder="e.g., File a bug report", on_change=None) | |
in_title = st.text_input("Title Metadata: ", placeholder="e.g., [Bug]: ", on_change=None) | |
in_labels = st.text_input("Labels Metadata: ", placeholder="e.g., feature, enhancement", on_change=None) | |
in_assignees = st.text_input("Assignees Metadata: ", placeholder="e.g., USER_1, USER_2", on_change=None) | |
# if no headlines is selected, force the headlines to be empty as well. | |
option = st.selectbox( | |
'How would you like to be Your Heders?', | |
('**Emphasis**', '# Header', 'No headlines')) | |
in_headlines = st.text_area("Headlines: ", placeholder="Enter each headline in one line.", on_change=None, height=200) | |
df = pd.DataFrame( | |
[{"headline": "Welcome"},{"command": "Concise Description"}, {"command": "Additional Info"},]) | |
in_headlines = st.experimental_data_editor(df, num_rows="dynamic") | |
in_summary = st.text_area("Summary: ", placeholder="This Github Issue Template is ...", on_change=None, height=200) | |
with st.expander("π Model Configs", False): | |
max_length = st.slider("max_length", 30, 512, 300) | |
min_length = st.slider("min_length", 0, 300, 30) | |
top_p = st.slider("top_p", 0.0, 1.0, 0.92) | |
top_k = st.slider("top_k", 0, 100, 0) | |
def render_svg(svg): | |
"""Renders the given svg string.""" | |
b64 = base64.b64encode(svg.encode("utf-8")).decode("utf-8") | |
html = rf'<p align="center"> <img src="data:image/svg+xml;base64,{b64}", width="40%"/> </p>' | |
c = st.container() | |
c.write(html, unsafe_allow_html=True) | |
def load_model(model_name): | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
return model | |
def load_tokenizer(model_name): | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
return tokenizer | |
with st.spinner(text="Please wait while the model is loading...."): | |
model = load_model('nafisehNik/girt-t5-base') | |
tokenizer = load_tokenizer('nafisehNik/girt-t5-base') | |
def compute(sample, top_p, top_k, do_sample, max_length, min_length): | |
inputs = tokenizer(sample, return_tensors="pt").to('cpu') | |
outputs = model.generate( | |
**inputs, | |
min_length= min_length, | |
max_length=max_length, | |
do_sample=do_sample, | |
top_p=top_p, | |
top_k=top_k).to('cpu') | |
generated_texts = tokenizer.batch_decode(outputs, skip_special_tokens=False) | |
generated_text = generated_texts[0] | |
replace_dict = { | |
'\n ': '\n', | |
'</s>': '', | |
'<pad> ': '', | |
'<pad>': '', | |
'<unk>': '' | |
} | |
postprocess_text = generated_text | |
for key, value in replace_dict.items(): | |
postprocess_text = postprocess_text.replace(key, value) | |
return postprocess_text | |
st.markdown("[![Duplicate Space](https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14)](https://huggingface.co/spaces/nafisehNik/girt-space?duplicate=true)") | |
render_svg(open("assets/logo.svg").read()) | |
tab1, tab2 = st.tabs(["Design GitHub Issue Template", "Manual Prompt"]) | |
with tab1: | |
col1, col2, col3 = st.columns([6, 1, 7]) | |
with col1: | |
pass | |
with tab2: | |
prompt = st.text_area("Prompt: ", placeholder="Enter your prompt.", on_change=None, height=200) | |
# TODO: Check if this is needed! | |
clicked = st.button("Submit") | |
with st.spinner("Please Wait..."): | |
if prompt: | |
res = compute(prompt, top_p=0.92, top_k=0, do_sample=True, max_length=300, min_length=0) | |
st.code(res, language="python") | |