Spaces:
Running
Running
import PIL | |
import cv2 | |
import numpy as np | |
import torch | |
from mmpose.apis import MMPoseInferencer | |
from mmpose.apis import inference_topdown, init_model | |
from mmpose.utils import register_all_modules | |
register_all_modules() | |
def save_image(img, img_path): | |
# Convert PIL image to OpenCV image | |
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) | |
# Save OpenCV image | |
cv2.imwrite(img_path, img) | |
def predict_pose(img, img_path): | |
save_image(img, img_path) | |
result = mmpose_coco(img_path) | |
keypoints = result[0].pred_instances['keypoints'][0] | |
# Create a dictionary to store keypoints and their names | |
keypoints_data = { | |
'keypoints': keypoints.tolist(), | |
'keypoint_names': [ | |
'nose', | |
'left_eye', | |
'right_eye', | |
'left_ear', | |
'right_ear', | |
'left_shoulder', | |
'right_shoulder', | |
'left_elbow', | |
'right_elbow', | |
'left_wrist', | |
'right_wrist', | |
'left_hip', | |
'right_hip', | |
'left_knee', | |
'right_knee', | |
'left_ankle', | |
'right_ankle' | |
] | |
} | |
return (img, keypoints_data) | |
def mmpose_coco(img_path, | |
config_file = 'mmpose/td-hm_hrnet-w48_8xb32-210e_coco-256x192.py', | |
checkpoint_file = 'mmpose/td-hm_hrnet-w48_8xb32-210e_coco-256x192-0e67c616_20220913.pth'): | |
device = torch.cuda.current_device() if torch.cuda.is_available() else 'cpu' | |
# coco keypoints: | |
# https://github.com/open-mmlab/mmpose/blob/master/mmpose/datasets/datasets/top_down/topdown_coco_dataset.py#L28 | |
model = init_model(config_file, checkpoint_file, device=device) | |
results = inference_topdown(model, img_path) | |
return results | |