Spaces:
Sleeping
Sleeping
auto_scale_lr = dict(base_batch_size=512) | |
backend_args = dict(backend='local') | |
codec = dict( | |
heatmap_size=( | |
48, | |
64, | |
), | |
input_size=( | |
192, | |
256, | |
), | |
sigma=2, | |
type='MSRAHeatmap') | |
custom_hooks = [ | |
dict(type='SyncBuffersHook'), | |
] | |
data_mode = 'topdown' | |
data_root = 'data/coco/' | |
dataset_type = 'CocoDataset' | |
default_hooks = dict( | |
badcase=dict( | |
badcase_thr=5, | |
enable=False, | |
metric_type='loss', | |
out_dir='badcase', | |
type='BadCaseAnalysisHook'), | |
checkpoint=dict( | |
interval=10, | |
rule='greater', | |
save_best='coco/AP', | |
type='CheckpointHook'), | |
logger=dict(interval=50, type='LoggerHook'), | |
param_scheduler=dict(type='ParamSchedulerHook'), | |
sampler_seed=dict(type='DistSamplerSeedHook'), | |
timer=dict(type='IterTimerHook'), | |
visualization=dict(enable=False, type='PoseVisualizationHook')) | |
default_scope = 'mmpose' | |
env_cfg = dict( | |
cudnn_benchmark=False, | |
dist_cfg=dict(backend='nccl'), | |
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0)) | |
load_from = None | |
log_level = 'INFO' | |
log_processor = dict( | |
by_epoch=True, num_digits=6, type='LogProcessor', window_size=50) | |
model = dict( | |
backbone=dict( | |
extra=dict( | |
stage1=dict( | |
block='BOTTLENECK', | |
num_blocks=(4, ), | |
num_branches=1, | |
num_channels=(64, ), | |
num_modules=1), | |
stage2=dict( | |
block='BASIC', | |
num_blocks=( | |
4, | |
4, | |
), | |
num_branches=2, | |
num_channels=( | |
48, | |
96, | |
), | |
num_modules=1), | |
stage3=dict( | |
block='BASIC', | |
num_blocks=( | |
4, | |
4, | |
4, | |
), | |
num_branches=3, | |
num_channels=( | |
48, | |
96, | |
192, | |
), | |
num_modules=4), | |
stage4=dict( | |
block='BASIC', | |
num_blocks=( | |
4, | |
4, | |
4, | |
4, | |
), | |
num_branches=4, | |
num_channels=( | |
48, | |
96, | |
192, | |
384, | |
), | |
num_modules=3)), | |
in_channels=3, | |
init_cfg=dict( | |
checkpoint= | |
'https://download.openmmlab.com/mmpose/pretrain_models/hrnet_w48-8ef0771d.pth', | |
type='Pretrained'), | |
type='HRNet'), | |
data_preprocessor=dict( | |
bgr_to_rgb=True, | |
mean=[ | |
123.675, | |
116.28, | |
103.53, | |
], | |
std=[ | |
58.395, | |
57.12, | |
57.375, | |
], | |
type='PoseDataPreprocessor'), | |
head=dict( | |
decoder=dict( | |
heatmap_size=( | |
48, | |
64, | |
), | |
input_size=( | |
192, | |
256, | |
), | |
sigma=2, | |
type='MSRAHeatmap'), | |
deconv_out_channels=None, | |
in_channels=48, | |
loss=dict(type='KeypointMSELoss', use_target_weight=True), | |
out_channels=17, | |
type='HeatmapHead'), | |
test_cfg=dict(flip_mode='heatmap', flip_test=True, shift_heatmap=True), | |
type='TopdownPoseEstimator') | |
optim_wrapper = dict(optimizer=dict(lr=0.0005, type='Adam')) | |
param_scheduler = [ | |
dict( | |
begin=0, by_epoch=False, end=500, start_factor=0.001, type='LinearLR'), | |
dict( | |
begin=0, | |
by_epoch=True, | |
end=210, | |
gamma=0.1, | |
milestones=[ | |
170, | |
200, | |
], | |
type='MultiStepLR'), | |
] | |
resume = False | |
test_cfg = dict() | |
test_dataloader = dict( | |
batch_size=32, | |
dataset=dict( | |
ann_file='annotations/person_keypoints_val2017.json', | |
bbox_file= | |
'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json', | |
data_mode='topdown', | |
data_prefix=dict(img='val2017/'), | |
data_root='data/coco/', | |
pipeline=[ | |
dict(type='LoadImage'), | |
dict(type='GetBBoxCenterScale'), | |
dict(input_size=( | |
192, | |
256, | |
), type='TopdownAffine'), | |
dict(type='PackPoseInputs'), | |
], | |
test_mode=True, | |
type='CocoDataset'), | |
drop_last=False, | |
num_workers=2, | |
persistent_workers=True, | |
sampler=dict(round_up=False, shuffle=False, type='DefaultSampler')) | |
test_evaluator = dict( | |
ann_file='data/coco/annotations/person_keypoints_val2017.json', | |
type='CocoMetric') | |
train_cfg = dict(by_epoch=True, max_epochs=210, val_interval=10) | |
train_dataloader = dict( | |
batch_size=32, | |
dataset=dict( | |
ann_file='annotations/person_keypoints_train2017.json', | |
data_mode='topdown', | |
data_prefix=dict(img='train2017/'), | |
data_root='data/coco/', | |
pipeline=[ | |
dict(type='LoadImage'), | |
dict(type='GetBBoxCenterScale'), | |
dict(direction='horizontal', type='RandomFlip'), | |
dict(type='RandomHalfBody'), | |
dict(type='RandomBBoxTransform'), | |
dict(input_size=( | |
192, | |
256, | |
), type='TopdownAffine'), | |
dict( | |
encoder=dict( | |
heatmap_size=( | |
48, | |
64, | |
), | |
input_size=( | |
192, | |
256, | |
), | |
sigma=2, | |
type='MSRAHeatmap'), | |
type='GenerateTarget'), | |
dict(type='PackPoseInputs'), | |
], | |
type='CocoDataset'), | |
num_workers=2, | |
persistent_workers=True, | |
sampler=dict(shuffle=True, type='DefaultSampler')) | |
train_pipeline = [ | |
dict(type='LoadImage'), | |
dict(type='GetBBoxCenterScale'), | |
dict(direction='horizontal', type='RandomFlip'), | |
dict(type='RandomHalfBody'), | |
dict(type='RandomBBoxTransform'), | |
dict(input_size=( | |
192, | |
256, | |
), type='TopdownAffine'), | |
dict( | |
encoder=dict( | |
heatmap_size=( | |
48, | |
64, | |
), | |
input_size=( | |
192, | |
256, | |
), | |
sigma=2, | |
type='MSRAHeatmap'), | |
type='GenerateTarget'), | |
dict(type='PackPoseInputs'), | |
] | |
val_cfg = dict() | |
val_dataloader = dict( | |
batch_size=32, | |
dataset=dict( | |
ann_file='annotations/person_keypoints_val2017.json', | |
bbox_file= | |
'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json', | |
data_mode='topdown', | |
data_prefix=dict(img='val2017/'), | |
data_root='data/coco/', | |
pipeline=[ | |
dict(type='LoadImage'), | |
dict(type='GetBBoxCenterScale'), | |
dict(input_size=( | |
192, | |
256, | |
), type='TopdownAffine'), | |
dict(type='PackPoseInputs'), | |
], | |
test_mode=True, | |
type='CocoDataset'), | |
drop_last=False, | |
num_workers=2, | |
persistent_workers=True, | |
sampler=dict(round_up=False, shuffle=False, type='DefaultSampler')) | |
val_evaluator = dict( | |
ann_file='data/coco/annotations/person_keypoints_val2017.json', | |
type='CocoMetric') | |
val_pipeline = [ | |
dict(type='LoadImage'), | |
dict(type='GetBBoxCenterScale'), | |
dict(input_size=( | |
192, | |
256, | |
), type='TopdownAffine'), | |
dict(type='PackPoseInputs'), | |
] | |
vis_backends = [ | |
dict(type='LocalVisBackend'), | |
] | |
visualizer = dict( | |
name='visualizer', | |
type='PoseLocalVisualizer', | |
vis_backends=[ | |
dict(type='LocalVisBackend'), | |
]) | |