Spaces:
Sleeping
Sleeping
Chris
commited on
Commit
·
c205b8f
1
Parent(s):
2c8cacd
Improvements after call with Peter.
Browse files- README.md +8 -0
- app.py +13 -17
- body_shape_lookup.py +17 -7
- body_shape_measures.csv +13 -0
- body_shape_measures_normalised.csv +0 -11
- body_shape_measures_normalised_updated.csv +0 -11
- keypoints_extraction.py +47 -18
- select_body_shape.py +8 -4
- volunteers_measures_normalised_updated.csv +0 -11
README.md
CHANGED
@@ -11,3 +11,11 @@ license: apache-2.0
|
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
14 |
+
|
15 |
+
## Usage
|
16 |
+
|
17 |
+
```python app.py```
|
18 |
+
|
19 |
+
## Notes
|
20 |
+
|
21 |
+
body_shape_measures_normalised is not being used because the input can't be normalised. Keeping it for future reference.
|
app.py
CHANGED
@@ -5,7 +5,7 @@ os.system("pip install 'mmcv>=2.0.0rc4,<2.1.0'")
|
|
5 |
os.system("pip install 'mmdet>=3.0.0,<4.0.0'")
|
6 |
os.system("pip install 'mmpose'")
|
7 |
|
8 |
-
from keypoints_extraction import
|
9 |
from calculate_measures import calculate_all_measures
|
10 |
from calculate_masks import calculate_seg_mask
|
11 |
from select_body_shape import select_body_shape
|
@@ -14,10 +14,10 @@ import gradio as gr
|
|
14 |
|
15 |
def generate_output(front_img_path, side_img_path):
|
16 |
# TODO: These file names will need to be unique in case of multiple requests at once, and they will need to be deleted after the function is done.
|
17 |
-
|
18 |
-
|
|
|
19 |
|
20 |
-
# TODO: LOW PRIORITY: Should we create the image separately? Seems weird to get it as a result from this only to use it in something else below.
|
21 |
front_image = front_keypoint_result[0]
|
22 |
side_image = side_keypoint_result[0]
|
23 |
|
@@ -25,28 +25,24 @@ def generate_output(front_img_path, side_img_path):
|
|
25 |
side_keypoint_data = side_keypoint_result[1]
|
26 |
|
27 |
front_seg_mask = calculate_seg_mask(front_img_path)
|
28 |
-
|
29 |
-
# The name implies that it should be a rcnn mask, but the code actually requests a seg mask.
|
30 |
-
# If we don't need a rcnn mask, then delete the rcnn code from calculate_masks.py and rename side_rcnn_mask to side_seg_mask.
|
31 |
-
side_rcnn_mask = calculate_seg_mask(side_img_path)
|
32 |
|
33 |
-
measures_data_frame = calculate_all_measures(front_image, side_image, front_keypoint_data, side_keypoint_data, front_seg_mask,
|
34 |
|
35 |
-
#
|
36 |
normalised_measures_data_frame = measures_data_frame
|
37 |
|
38 |
-
|
|
|
|
|
39 |
|
40 |
-
return (selected_body_shape)
|
41 |
|
42 |
input_image_front = gr.inputs.Image(type='pil', label="Front Image")
|
43 |
input_image_side = gr.inputs.Image(type='pil', label="Side Image")
|
44 |
-
# output_image_front = gr.outputs.Image(type="pil", label="Front Output Image")
|
45 |
-
# output_text_front = gr.outputs.Textbox(label="Front Output Text")
|
46 |
-
# output_image_side = gr.outputs.Image(type="pil", label="Front Output Image")
|
47 |
-
# output_text_side = gr.outputs.Textbox(label="Side Output Text")
|
48 |
output_body_shape = gr.outputs.Textbox(label="Body Shape")
|
|
|
49 |
|
50 |
title = "ShopByShape"
|
51 |
-
iface = gr.Interface(fn=generate_output, inputs=[input_image_front, input_image_side], outputs=[output_body_shape], title=title)
|
52 |
iface.launch()
|
|
|
5 |
os.system("pip install 'mmdet>=3.0.0,<4.0.0'")
|
6 |
os.system("pip install 'mmpose'")
|
7 |
|
8 |
+
from keypoints_extraction import predict_poses
|
9 |
from calculate_measures import calculate_all_measures
|
10 |
from calculate_masks import calculate_seg_mask
|
11 |
from select_body_shape import select_body_shape
|
|
|
14 |
|
15 |
def generate_output(front_img_path, side_img_path):
|
16 |
# TODO: These file names will need to be unique in case of multiple requests at once, and they will need to be deleted after the function is done.
|
17 |
+
keypoint_results = predict_poses(front_img_path, "front.jpg", side_img_path, "side.jpg")
|
18 |
+
front_keypoint_result = keypoint_results[0]
|
19 |
+
side_keypoint_result = keypoint_results[1]
|
20 |
|
|
|
21 |
front_image = front_keypoint_result[0]
|
22 |
side_image = side_keypoint_result[0]
|
23 |
|
|
|
25 |
side_keypoint_data = side_keypoint_result[1]
|
26 |
|
27 |
front_seg_mask = calculate_seg_mask(front_img_path)
|
28 |
+
side_seg_mask = calculate_seg_mask(side_img_path)
|
|
|
|
|
|
|
29 |
|
30 |
+
measures_data_frame = calculate_all_measures(front_image, side_image, front_keypoint_data, side_keypoint_data, front_seg_mask, side_seg_mask)
|
31 |
|
32 |
+
# We can't normalise the measures because we don't have multiple images in this case, so just use the measures directly.
|
33 |
normalised_measures_data_frame = measures_data_frame
|
34 |
|
35 |
+
body_shape_result = select_body_shape(normalised_measures_data_frame)
|
36 |
+
selected_body_shape = body_shape_result[0]
|
37 |
+
calculation_information = body_shape_result[1]
|
38 |
|
39 |
+
return (selected_body_shape, calculation_information)
|
40 |
|
41 |
input_image_front = gr.inputs.Image(type='pil', label="Front Image")
|
42 |
input_image_side = gr.inputs.Image(type='pil', label="Side Image")
|
|
|
|
|
|
|
|
|
43 |
output_body_shape = gr.outputs.Textbox(label="Body Shape")
|
44 |
+
output_calculation_information = gr.outputs.Textbox(label="Calculation Information")
|
45 |
|
46 |
title = "ShopByShape"
|
47 |
+
iface = gr.Interface(fn=generate_output, inputs=[input_image_front, input_image_side], outputs=[output_body_shape, output_calculation_information], title=title)
|
48 |
iface.launch()
|
body_shape_lookup.py
CHANGED
@@ -2,18 +2,28 @@
|
|
2 |
|
3 |
def body_shape_lookup(index):
|
4 |
if index == 1:
|
5 |
-
return "
|
6 |
elif index == 2:
|
7 |
-
return "
|
8 |
elif index == 3:
|
9 |
-
return "
|
10 |
elif index == 4:
|
11 |
-
return "
|
12 |
elif index == 5:
|
13 |
-
return "
|
14 |
elif index == 6:
|
15 |
-
return "
|
16 |
elif index == 7:
|
17 |
-
return "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
else:
|
19 |
return "Unknown"
|
|
|
2 |
|
3 |
def body_shape_lookup(index):
|
4 |
if index == 1:
|
5 |
+
return "Skittle"
|
6 |
elif index == 2:
|
7 |
+
return "Goblet"
|
8 |
elif index == 3:
|
9 |
+
return "Hourglass"
|
10 |
elif index == 4:
|
11 |
+
return "Cornet"
|
12 |
elif index == 5:
|
13 |
+
return "Cello"
|
14 |
elif index == 6:
|
15 |
+
return "Apple"
|
16 |
elif index == 7:
|
17 |
+
return "Column"
|
18 |
+
elif index == 8:
|
19 |
+
return "Bell"
|
20 |
+
elif index == 9:
|
21 |
+
return "Vase"
|
22 |
+
elif index == 10:
|
23 |
+
return "Brick"
|
24 |
+
elif index == 11:
|
25 |
+
return "Lollipop"
|
26 |
+
elif index == 12:
|
27 |
+
return "Pear"
|
28 |
else:
|
29 |
return "Unknown"
|
body_shape_measures.csv
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
id,shoulder_width,hip_width,shoulder_to_hip_distance,hip_to_ankle_distance,torso_to_leg_ratio,waist_width,thigh_area,torso_area,lower_torso_area,upper_torso_area,full_side_body_area,thigh_normalised,torso_normalised,thigh_to_torso_ratio_normalised,thigh_to_torso_ratio,upper_torso_normalised,lower_torso_normalised,upper_to_lower_torso_normalised_ratio,upper_to_lower_torso_ratio,shoulder_to_hip_ratio,shoulder_to_waist_ratio,waist_to_hip_ratio,thigh_to_body_ratio,upper_torso_to_body_ratio,front_img_jpg,front_img_json,side_img_jpg,side_img_json
|
2 |
+
1,862,784,1063.125,1693.125,0.627906976744186,620,257624,390342,199277,191065,892199,103.14065385848444,156.27476131272138,0.6599955936076569,0.6599955936076569,76.49352944396225,79.78123186875914,0.9587910295719024,0.9587910295719024,1.0994897959183674,1.3903225806451613,0.7908163265306123,0.2887517246712897,0.21415065473061504,data/body_shape_full_res/body_shape_full_res_jpg/1. Skittle - front_keypoints.json,data/body_shape_full_res/body_shape_full_res_jpg/1. Skittle - front.jpg,data/body_shape_full_res/body_shape_full_res_jpg/1. Skittle - side_keypoints.json,data/body_shape_full_res/body_shape_full_res_jpg/1. Skittle - side.jpg
|
3 |
+
2,922,754,1189.5572967529297,1539.4271240234375,0.7727272556065595,661,121384,277283,139575,137708,551325,64.46416065056842,147.25841838851548,0.4377621419272007,0.43776214192720075,73.13344950626504,74.12496888225044,0.9866236790256133,0.9866236790256134,1.2228116710875332,1.394856278366112,0.876657824933687,0.22016777762662676,0.24977644764884596,data/body_shape_full_res/body_shape_full_res_jpg/2. Goblet - front_keypoints.json,data/body_shape_full_res/body_shape_full_res_jpg/2. Goblet - front.jpg,data/body_shape_full_res/body_shape_full_res_jpg/2. Goblet - side_keypoints.json,data/body_shape_full_res/body_shape_full_res_jpg/2. Goblet - side.jpg
|
4 |
+
3,965,919,1206.3802032470703,1419.2706298828125,0.8500001182626317,730,179510,324886,159386,165500,683519,91.29107939251269,165.22307180388768,0.5525322728587874,0.5525322728587874,84.16619486079243,81.05687694309525,1.0383597053693547,1.038359705369355,1.0500544069640914,1.321917808219178,0.794341675734494,0.26262620351445976,0.24212933363959158,data/body_shape_full_res/body_shape_full_res_jpg/3. Hourglass - front_keypoints.json,data/body_shape_full_res/body_shape_full_res_jpg/3. Hourglass - front.jpg,data/body_shape_full_res/body_shape_full_res_jpg/3. Hourglass - side_keypoints.json,data/body_shape_full_res/body_shape_full_res_jpg/3. Hourglass - side.jpg
|
5 |
+
4,905,697,1054.010498046875,1505.7291259765625,0.7000000729635094,561,147805,291112,144761,146351,586666,72.95402641247145,143.68791676186456,0.5077255489296215,0.5077255489296216,72.23635681804816,71.45155994381638,1.0109836212792118,1.010983621279212,1.2984218077474892,1.6131907308377897,0.8048780487804879,0.25194062720525817,0.24946221529797194,data/body_shape_full_res/body_shape_full_res_jpg/4. Cornet - front_keypoints.json,data/body_shape_full_res/body_shape_full_res_jpg/4. Cornet - front.jpg,data/body_shape_full_res/body_shape_full_res_jpg/4. Cornet - side_keypoints.json,data/body_shape_full_res/body_shape_full_res_jpg/4. Cornet - side.jpg
|
6 |
+
5,926,722,940.0780792236328,1566.796875,0.5999999707834704,602,159618,299091,159016,140075,612306,81.38949821484591,152.5070255896984,0.5336770414355497,0.5336770414355497,71.42448823092973,81.08253735876866,0.8808862001308045,0.8808862001308044,1.2825484764542936,1.5382059800664452,0.8337950138504155,0.2606833837982969,0.2287663357863552,data/body_shape_full_res/body_shape_full_res_jpg/5. Cello - Front_keypoints.json,data/body_shape_full_res/body_shape_full_res_jpg/5. Cello - Front.jpg,data/body_shape_full_res/body_shape_full_res_jpg/5. Cello - side_keypoints.json,data/body_shape_full_res/body_shape_full_res_jpg/5. Cello - side.jpg
|
7 |
+
6,890,873,1077.6822814941406,1486.4581298828125,0.7250000923867943,802,137990,314409,165422,148987,595719,77.41391438883764,176.38692230654434,0.4388869275370616,0.4388869275370616,83.58335287375718,92.80356943278716,0.9006480395594298,0.9006480395594298,1.0194730813287514,1.1097256857855362,0.9186712485681557,0.23163605659715403,0.25009610235698376,data/body_shape_full_res/body_shape_full_res_jpg/6. Apple - front_keypoints.json,data/body_shape_full_res/body_shape_full_res_jpg/6. Apple - front.jpg,data/body_shape_full_res/body_shape_full_res_jpg/6. Apple - side_keypoints.json,data/body_shape_full_res/body_shape_full_res_jpg/6. Apple - side.jpg
|
8 |
+
7,866,759,1028.59375,1560.625,0.6590909090909091,719,134694,231452,118696,112756,510697,73.00696475699573,125.45182418620112,0.581952197431865,0.5819521974318649,61.11610998366527,64.33571420253585,0.9499561906045696,0.9499561906045697,1.1409749670619236,1.2044506258692629,0.9472990777338604,0.2637454302649125,0.22078845186088816,data/body_shape_full_res/body_shape_full_res_jpg/7. Column - front_keypoints.json,data/body_shape_full_res/body_shape_full_res_jpg/7. Column - front.jpg,data/body_shape_full_res/body_shape_full_res_jpg/7. Column - side_keypoints.json,data/body_shape_full_res/body_shape_full_res_jpg/7. Column - side.jpg
|
9 |
+
8,895,859,1074.1015625,1351.2890625,0.7948717948717948,764,134058,225517,122004,103513,493213,79.88289035868203,134.381758530031,0.5944474252495378,0.5944474252495378,61.68164249577237,72.70011603425861,0.8484393954296581,0.8484393954296581,1.0419091967403957,1.1714659685863875,0.889406286379511,0.27180548768990276,0.20987484109299634,data/body_shape_full_res/body_shape_full_res_jpg/8. Bell - front_keypoints.json,data/body_shape_full_res/body_shape_full_res_jpg/8. Bell - front.jpg,data/body_shape_full_res/body_shape_full_res_jpg/8. Bell - side_keypoints.json,data/body_shape_full_res/body_shape_full_res_jpg/8. Bell - side.jpg
|
10 |
+
9,909,759,1098.4505310058594,1477.2266845703125,0.7435896890295958,625,121161,246871,117556,129315,505260,67.14540601505387,136.81179198209296,0.49078668616402893,0.490786686164029,71.66421685886293,65.14757512323003,1.1000289223859268,1.1000289223859268,1.1976284584980237,1.4544,0.8234519104084321,0.23979931124569528,0.2559375371096069,data/body_shape_full_res/body_shape_full_res_jpg/9. Vase - front_keypoints.json,data/body_shape_full_res/body_shape_full_res_jpg/9. Vase - front.jpg,data/body_shape_full_res/body_shape_full_res_jpg/9. Vase - side_keypoints.json,data/body_shape_full_res/body_shape_full_res_jpg/9. Vase - side.jpg
|
11 |
+
10,946,752,947.5520935058594,1421.3280029296875,0.6666667310801829,699,142076,266731,134791,131940,541046,78.54164138333135,147.4527052269022,0.5326564966201903,0.5326564966201904,72.93831585993932,74.51438936696287,0.9788487361915854,0.9788487361915855,1.2579787234042554,1.3533619456366237,0.9295212765957447,0.2625950473712032,0.2438609656110571,data/body_shape_full_res/body_shape_full_res_jpg/10. Brick - front_keypoints.json,data/body_shape_full_res/body_shape_full_res_jpg/10. Brick - front.jpg,data/body_shape_full_res/body_shape_full_res_jpg/10. Brick - side_keypoints.json,data/body_shape_full_res/body_shape_full_res_jpg/10. Brick - side.jpg
|
12 |
+
11,829,655,1032.0313415527344,1582.4478759765625,0.6521739876682167,547,145991,282535,135740,146795,590443,69.70126441106437,134.89219705584642,0.51671828269064,0.5167182826906401,70.08512243372671,64.80707462211971,1.0814424635332254,1.0814424635332254,1.265648854961832,1.5155393053016453,0.8351145038167939,0.24725672080116115,0.2486184102445113,data/body_shape_full_res/body_shape_full_res_jpg/11. Lollipop - front_keypoints.json,data/body_shape_full_res/body_shape_full_res_jpg/11. Lollipop - front.jpg,data/body_shape_full_res/body_shape_full_res_jpg/11. Lollipop - side_keypoints.json,data/body_shape_full_res/body_shape_full_res_jpg/11. Lollipop - side.jpg
|
13 |
+
12,833,781,1128.3333435058594,1551.4583740234375,0.7272727147552938,575,264681,399328,196932,202396,903281,106.31059900025417,160.39231708197227,0.6628160309319656,0.6628160309319657,81.29348156934364,79.09883551262861,1.0277456177766946,1.0277456177766946,1.0665813060179257,1.448695652173913,0.736235595390525,0.2930217728480949,0.22406759358383493,data/body_shape_full_res/body_shape_full_res_jpg/12. Pear - front_keypoints.json,data/body_shape_full_res/body_shape_full_res_jpg/12. Pear - front.jpg,data/body_shape_full_res/body_shape_full_res_jpg/12. Pear - side_keypoints.json,data/body_shape_full_res/body_shape_full_res_jpg/12. Pear - side.jpg
|
body_shape_measures_normalised.csv
DELETED
@@ -1,11 +0,0 @@
|
|
1 |
-
id,shoulder_width,hip_width,shoulder_to_hip_distance,hip_to_ankle_distance,torso_to_leg_ratio,waist_width,thigh_area,torso_area,lower_torso_area,upper_torso_area,full_side_body_area,thigh_normalised,torso_normalised,thigh_to_torso_ratio_normalised,thigh_to_torso_ratio,upper_torso_normalised,lower_torso_normalised,upper_to_lower_torso_normalised_ratio,upper_to_lower_torso_ratio,shoulder_to_hip_ratio,shoulder_to_waist_ratio,waist_to_hip_ratio,thigh_to_body_ratio,upper_torso_to_body_ratio,front_img_jpg,front_img_json,side_img_jpg,side_img_json
|
2 |
-
2A,309,269,323.125,454.39453125,0.7111111111111111,235,34229,50778,25191,25587,129184,39.727990098179454,58.935635899540046,0.6740911418330774,0.6740911418330773,29.697627235447065,29.23800866409298,1.015719899964273,1.015719899964273,1.1486988847583643,1.3148936170212766,0.8736059479553904,0.26496315333168197,0.1980663240029725,data/volunteers_full_res/2. A front.JPG,data/volunteers_full_res/keypoints/2. A front_keypoints.json,data/volunteers_full_res/2. A side.JPG,data/volunteers_full_res/keypoints/2. A side_keypoints.json
|
3 |
-
5A,751,784,799.8046875,1538.0859375,0.52,820,359036,478409,244104,234305,1317742,132.59746694466295,176.68373523415272,0.7504791924901079,0.7504791924901079,86.53240759274627,90.15132764140644,0.9598572739488087,0.9598572739488087,0.9579081632653061,0.9158536585365854,1.0459183673469388,0.27246304663583615,0.17780794723094506,data/volunteers_full_res/5. A front.jpg,data/volunteers_full_res/keypoints/5. A front_keypoints.json,data/volunteers_full_res/5. A side.jpg,data/volunteers_full_res/keypoints/5. A side_keypoints.json
|
4 |
-
7A,888,771,895.234375,1694.55078125,0.5283018867924528,549,252555,338580,163668,174912,874524,99.19811098210289,132.9868599565259,0.7459241538188905,0.7459241538188907,68.70162930095061,64.28523065557529,1.0687000513234108,1.0687000513234108,1.1517509727626458,1.6174863387978142,0.7120622568093385,0.2887913882294825,0.20000823305020787,data/volunteers_full_res/7. A front.jpg,data/volunteers_full_res/keypoints/7. A front_keypoints.json,data/volunteers_full_res/7. A side.jpg,data/volunteers_full_res/keypoints/7. A side_keypoints.json
|
5 |
-
7B,718,696,974.501953125,1446.03515625,0.6739130434782609,537,252642,372623,181265,191358,979634,96.55081855617931,142.40330452917252,0.6780096773414416,0.6780096773414416,73.13024571240474,69.27305881676777,1.0556809091661379,1.0556809091661379,1.0316091954022988,1.3370577281191807,0.771551724137931,0.2578942748005888,0.1953362174036426,data/volunteers_full_res/7. B front.jpg,data/volunteers_full_res/keypoints/7. B front_keypoints.json,data/volunteers_full_res/7. B side.jpg,data/volunteers_full_res/keypoints/7. B side_keypoints.json
|
6 |
-
7C,233,198,280.13671875,340.166015625,0.8235294117647058,160,21697,39647,20911,18736,72801,32.398362709200065,59.201635540934454,0.5472545211491412,0.5472545211491412,27.97694260587051,31.22469293506395,0.89598775763952,0.8959877576395199,1.1767676767676767,1.45625,0.8080808080808081,0.2980316204447741,0.25735910221013447,data/volunteers_full_res/7. C front.JPG,data/volunteers_full_res/keypoints/7. C front_keypoints.json,data/volunteers_full_res/7. C side.JPG,data/volunteers_full_res/keypoints/7. C side_keypoints.json
|
7 |
-
9A,211,178,259.423828125,306.591796875,0.8461538461538461,141,13005,29217,12972,16245,63173,20.589812332439678,46.257020139707045,0.4451175685388643,0.44511756853886436,25.719454159206656,20.537565980500386,1.2523126734505088,1.2523126734505088,1.1853932584269662,1.49645390070922,0.7921348314606742,0.2058632643692717,0.25715099805296565,data/volunteers_full_res/9. A front.JPG,data/volunteers_full_res/keypoints/9. A front_keypoints.json,data/volunteers_full_res/9. A side.JPG,data/volunteers_full_res/keypoints/9. A side_keypoints.json
|
8 |
-
9B,368,314,440.0,700.0,0.6285714285714286,282,54350,88963,42901,46062,225792,43.11781039270131,70.57754859182864,0.6109281386643886,0.6109281386643886,36.54264180880603,34.03490678302261,1.0736812661709516,1.0736812661709518,1.1719745222929936,1.3049645390070923,0.8980891719745223,0.24070826247165533,0.20400191326530612,data/volunteers_full_res/9. B front.jpg,data/volunteers_full_res/keypoints/9. B front_keypoints.json,data/volunteers_full_res/9. B side.jpg,data/volunteers_full_res/keypoints/9. B side_keypoints.json
|
9 |
-
10A,189,179,224.580078125,348.486328125,0.6444444444444445,155,13346,21964,10953,11011,49817,23.882954108559645,39.3050505050505,0.6076306683664178,0.6076306683664178,19.704421376393693,19.60062912865681,1.0052953528713595,1.0052953528713595,1.0558659217877095,1.2193548387096773,0.8659217877094972,0.2679005158881506,0.22102896601561717,data/volunteers_full_res/10. A front.JPG,data/volunteers_full_res/keypoints/10. A front_keypoints.json,data/volunteers_full_res/10. A side.JPG,data/volunteers_full_res/keypoints/10. A side_keypoints.json
|
10 |
-
11A,203,169,223.330078125,304.541015625,0.7333333333333333,147,16750,30912,15171,15741,63617,25.30289865121034,46.69631063320681,0.5418607660455487,0.5418607660455487,23.77868224887773,22.917628384329078,1.0375716828158987,1.0375716828158987,1.2011834319526626,1.380952380952381,0.8698224852071006,0.26329440243959945,0.24743386201801404,data/volunteers_full_res/11. A front.jpg,data/volunteers_full_res/keypoints/11. A front_keypoints.json,data/volunteers_full_res/11. A side.jpg,data/volunteers_full_res/keypoints/11. A side_keypoints.json
|
11 |
-
12A,669,672,783.056640625,1269.091796875,0.6170212765957447,567,211624,335094,170606,164488,813075,90.92243084724528,143.97025404645413,0.6315362256560846,0.6315362256560846,70.67085399199374,73.2994000544604,0.9641395964971924,0.9641395964971924,0.9955357142857143,1.17989417989418,0.84375,0.26027611228976416,0.20230360052885651,data/volunteers_full_res/12. A front.jpg,data/volunteers_full_res/keypoints/12. A front_keypoints.json,data/volunteers_full_res/12. A side.jpg,data/volunteers_full_res/keypoints/12. A side_keypoints.json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
body_shape_measures_normalised_updated.csv
DELETED
@@ -1,11 +0,0 @@
|
|
1 |
-
id,shoulder_width,hip_width,shoulder_to_hip_distance,hip_to_ankle_distance,torso_to_leg_ratio,waist_width,thigh_area,torso_area,lower_torso_area,upper_torso_area,full_side_body_area,thigh_normalised,torso_normalised,thigh_to_torso_ratio_normalised,thigh_to_torso_ratio,upper_torso_normalised,lower_torso_normalised,upper_to_lower_torso_normalised_ratio,upper_to_lower_torso_ratio,shoulder_to_hip_ratio,shoulder_to_waist_ratio,waist_to_hip_ratio,thigh_to_body_ratio,upper_torso_to_body_ratio,front_img_jpg,front_img_json,side_img_jpg,side_img_json
|
2 |
-
2A,309,269,-0.6451853254425501,-0.6682325556525112,0.3512052843480335,235,34229,50778,25191,25587,129184,-0.5136746421535362,-0.6393085847116429,0.5341966631577374,0.5341966631577363,-0.6530399046830264,-0.6235671698990638,-0.18048946872604607,-0.18048946872604604,0.46262354383444276,-0.038443926936658726,0.2848605088833572,0.11603850407389217,-0.6352860522185653,data/volunteers_full_res/2. A front.JPG,data/volunteers_full_res/keypoints/2. A front_keypoints.json,data/volunteers_full_res/2. A side.JPG,data/volunteers_full_res/keypoints/2. A side_keypoints.json
|
3 |
-
5A,751,784,0.9144271139787139,1.2087976272001555,-1.393368840086257,820,359036,478409,244104,234305,1317742,1.7908025462101405,1.6581076973120041,1.3373436638658922,1.3373436638658922,1.5898707794468867,1.7184597534399404,-0.7675499961012099,-0.7675499961012098,-1.6885839094884345,-2.105222050862348,2.2088413671422513,0.4115935545489668,-1.3509388020203796,data/volunteers_full_res/5. A front.jpg,data/volunteers_full_res/keypoints/5. A front_keypoints.json,data/volunteers_full_res/5. A side.jpg,data/volunteers_full_res/keypoints/5. A side_keypoints.json
|
4 |
-
7A,888,771,1.2266563354411533,1.4798058058940855,-1.3175843564008711,549,252555,338580,163668,174912,874524,0.9620258960628703,0.8055256743012406,1.2894518062332987,1.2894518062332998,0.8862023059241599,0.7239466229852285,0.3762791226520531,0.37627912265205304,0.49703650905427676,1.5287976601007285,-1.5188804555519377,1.0550592184153258,-0.5666856621104159,data/volunteers_full_res/7. A front.jpg,data/volunteers_full_res/keypoints/7. A front_keypoints.json,data/volunteers_full_res/7. A side.jpg,data/volunteers_full_res/keypoints/7. A side_keypoints.json
|
5 |
-
7B,718,696,1.4860059660807992,1.0493591618169957,0.01163954223114654,537,252642,372623,181265,191358,979634,0.8963355830168163,0.9892525726734528,0.5753963012377995,0.5753963012377995,1.0609718924822236,0.9157212305526141,0.2394609133057007,0.23946091330570068,-0.8575885214005697,0.07635234591621287,-0.8546416455323987,-0.16253115903080398,-0.7317305165035971,data/volunteers_full_res/7. B front.jpg,data/volunteers_full_res/keypoints/7. B front_keypoints.json,data/volunteers_full_res/7. B side.jpg,data/volunteers_full_res/keypoints/7. B side_keypoints.json
|
6 |
-
7C,233,198,-0.7858354516068623,-0.8660844259672597,1.3774253575446744,160,21697,39647,20911,18736,72801,-0.6955531203216642,-0.6341185908976849,-0.7993686079294058,-0.7993686079294058,-0.7209444855652456,-0.5471821012653706,-1.4387549608901573,-1.4387549608901582,0.7791053627807573,0.6936939800717078,-0.4467705325621465,1.4191973718580178,1.4593062364358502,data/volunteers_full_res/7. C front.JPG,data/volunteers_full_res/keypoints/7. C front_keypoints.json,data/volunteers_full_res/7. C side.JPG,data/volunteers_full_res/keypoints/7. C side_keypoints.json
|
7 |
-
9A,211,178,-0.8536044015374634,-0.9242373480961905,1.5839544420431042,141,13005,29217,12972,16245,63173,-0.9885722682153351,-0.8866846225820019,-1.8732405871833364,-1.8732405871833364,-0.810033330890077,-0.9580863087680326,2.305864794991042,2.3058647949910416,0.8763606978908735,0.9019251126074833,-0.6248177905120642,-2.212964050626634,1.4519546942072203,data/volunteers_full_res/9. A front.JPG,data/volunteers_full_res/keypoints/9. A front_keypoints.json,data/volunteers_full_res/9. A side.JPG,data/volunteers_full_res/keypoints/9. A side_keypoints.json
|
8 |
-
9B,368,314,-0.2627907979699269,-0.24282650808339729,-0.40226526773322185,282,54350,88963,42901,46062,225792,-0.4295591307213896,-0.4121599519583041,-0.12990166261860167,-0.12990166261860167,-0.3829103075755036,-0.4391335397560143,0.42862672647856803,0.4286267264785703,0.7250614892098834,-0.08987035878672849,0.558231717572826,-0.8397958260534285,-0.4256038637053921,data/volunteers_full_res/9. B front.jpg,data/volunteers_full_res/keypoints/9. B front_keypoints.json,data/volunteers_full_res/9. B side.jpg,data/volunteers_full_res/keypoints/9. B side_keypoints.json
|
9 |
-
10A,189,179,-0.967607048096815,-0.8516730560853955,-0.2573670846406723,155,13346,21964,10953,11011,49817,-0.9068557521025037,-1.0223264573211466,-0.16457139639188673,-0.16457139639188673,-1.0474087761570212,-0.9941101434453615,-0.29004106968943183,-0.2900410696894318,-0.5840885829069261,-0.5332752158903319,0.19906183414420206,0.2317937959738227,0.1758982832290134,data/volunteers_full_res/10. A front.JPG,data/volunteers_full_res/keypoints/10. A front_keypoints.json,data/volunteers_full_res/10. A side.JPG,data/volunteers_full_res/keypoints/10. A side_keypoints.json
|
10 |
-
11A,203,169,-0.9716968291393029,-0.9277894463065092,0.5540627406776014,147,16750,30912,15171,15741,63617,-0.871621034320157,-0.8781135022156633,-0.8560787634674033,-0.8560787634674033,-0.886623370048677,-0.866576433381505,0.04915099181033875,0.049150991810338746,1.0543983860547377,0.3036992727189106,0.24261567283875252,0.050276534651395643,1.1086845891110646,data/volunteers_full_res/11. A front.jpg,data/volunteers_full_res/keypoints/11. A front_keypoints.json,data/volunteers_full_res/11. A side.jpg,data/volunteers_full_res/keypoints/11. A side_keypoints.json
|
11 |
-
12A,669,672,0.8596304382922542,0.7428807452800266,-0.5077018179835446,567,211624,335094,170606,164488,813075,0.7566719225447575,1.0198257653997465,0.08677258309590243,0.08677258309590243,0.9639151970662792,1.070528089537564,-0.7225470538308504,-0.7225470538308503,-1.2643249750290122,-0.7376568189389741,-0.04850067642283835,-0.06866794381056764,-0.48559890642479764,data/volunteers_full_res/12. A front.jpg,data/volunteers_full_res/keypoints/12. A front_keypoints.json,data/volunteers_full_res/12. A side.jpg,data/volunteers_full_res/keypoints/12. A side_keypoints.json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
keypoints_extraction.py
CHANGED
@@ -6,21 +6,27 @@ from mmpose.apis import inference_topdown, init_model
|
|
6 |
from mmpose.utils import register_all_modules
|
7 |
register_all_modules()
|
8 |
|
|
|
|
|
|
|
|
|
9 |
def save_image(img, img_path):
|
10 |
# Convert PIL image to OpenCV image
|
11 |
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
12 |
# Save OpenCV image
|
13 |
cv2.imwrite(img_path, img)
|
14 |
|
15 |
-
def
|
16 |
-
save_image(
|
|
|
17 |
|
18 |
-
|
19 |
-
|
|
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
'keypoints':
|
24 |
'keypoint_names': [
|
25 |
'nose',
|
26 |
'left_eye',
|
@@ -41,14 +47,37 @@ def predict_pose(img, img_path):
|
|
41 |
'right_ankle'
|
42 |
]
|
43 |
}
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
from mmpose.utils import register_all_modules
|
7 |
register_all_modules()
|
8 |
|
9 |
+
# coco keypoints:
|
10 |
+
# https://github.com/open-mmlab/mmpose/blob/master/mmpose/datasets/datasets/top_down/topdown_coco_dataset.py#L28
|
11 |
+
model = init_model('mmpose/td-hm_hrnet-w48_8xb32-210e_coco-256x192.py', 'mmpose/td-hm_hrnet-w48_8xb32-210e_coco-256x192-0e67c616_20220913.pth', device=torch.cuda.current_device() if torch.cuda.is_available() else 'cpu')
|
12 |
+
|
13 |
def save_image(img, img_path):
|
14 |
# Convert PIL image to OpenCV image
|
15 |
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
16 |
# Save OpenCV image
|
17 |
cv2.imwrite(img_path, img)
|
18 |
|
19 |
+
def predict_poses(front_img, front_img_path, side_img, side_img_path):
|
20 |
+
save_image(front_img, front_img_path)
|
21 |
+
save_image(side_img, side_img_path)
|
22 |
|
23 |
+
mmpose_result = mmpose_coco(front_img_path, side_img_path)
|
24 |
+
front_result = mmpose_result[0]
|
25 |
+
side_result = mmpose_result[1]
|
26 |
|
27 |
+
front_keypoints = front_result[0].pred_instances['keypoints'][0]
|
28 |
+
front_keypoints_data = {
|
29 |
+
'keypoints': front_keypoints.tolist(),
|
30 |
'keypoint_names': [
|
31 |
'nose',
|
32 |
'left_eye',
|
|
|
47 |
'right_ankle'
|
48 |
]
|
49 |
}
|
50 |
+
|
51 |
+
side_keypoints = side_result[0].pred_instances['keypoints'][0]
|
52 |
+
side_keypoints_data = {
|
53 |
+
'keypoints': side_keypoints.tolist(),
|
54 |
+
'keypoint_names': [
|
55 |
+
'nose',
|
56 |
+
'left_eye',
|
57 |
+
'right_eye',
|
58 |
+
'left_ear',
|
59 |
+
'right_ear',
|
60 |
+
'left_shoulder',
|
61 |
+
'right_shoulder',
|
62 |
+
'left_elbow',
|
63 |
+
'right_elbow',
|
64 |
+
'left_wrist',
|
65 |
+
'right_wrist',
|
66 |
+
'left_hip',
|
67 |
+
'right_hip',
|
68 |
+
'left_knee',
|
69 |
+
'right_knee',
|
70 |
+
'left_ankle',
|
71 |
+
'right_ankle'
|
72 |
+
]
|
73 |
+
}
|
74 |
+
|
75 |
+
return ((front_img, front_keypoints_data), (side_img, side_keypoints_data))
|
76 |
+
|
77 |
+
def mmpose_coco(front_img_path,
|
78 |
+
side_img_path):
|
79 |
+
|
80 |
+
front_results = inference_topdown(model, front_img_path)
|
81 |
+
side_results = inference_topdown(model, side_img_path)
|
82 |
+
|
83 |
+
return (front_results, side_results)
|
select_body_shape.py
CHANGED
@@ -4,7 +4,7 @@ from numpy import dot
|
|
4 |
from numpy.linalg import norm
|
5 |
from body_shape_lookup import body_shape_lookup
|
6 |
|
7 |
-
BODY_SHAPE_MEASURES = "
|
8 |
|
9 |
# selecting specific features
|
10 |
RATIOS_TO_USE = ['shoulder_to_hip_distance',
|
@@ -39,6 +39,8 @@ def select_body_shape(normalised_body_shape_measures):
|
|
39 |
# select only the columns corresponding to the ratios
|
40 |
body_shape_ratios = body_shape_df[RATIOS_TO_USE]
|
41 |
|
|
|
|
|
42 |
# calculate euclidean distance for each volunteer
|
43 |
for index, volunteer_row in volunteers_df.iterrows():
|
44 |
print(f"\nProcessing volunteer {volunteer_row['id']}")
|
@@ -59,13 +61,15 @@ def select_body_shape(normalised_body_shape_measures):
|
|
59 |
top_scores = top_scores[:3]
|
60 |
break
|
61 |
|
62 |
-
print(f"
|
|
|
63 |
|
64 |
# Print the top 3 best body shapes and scores for the current volunteer
|
65 |
-
print(f"
|
66 |
for i, (score, body_shape) in enumerate(top_scores):
|
67 |
print(f"Rank {i + 1}: Body Shape {body_shape} with score {score:.3f}")
|
|
|
68 |
|
69 |
body_shape_index = top_scores[0][1]
|
70 |
|
71 |
-
return body_shape_lookup(body_shape_index)
|
|
|
4 |
from numpy.linalg import norm
|
5 |
from body_shape_lookup import body_shape_lookup
|
6 |
|
7 |
+
BODY_SHAPE_MEASURES = "body_shape_measures.csv"
|
8 |
|
9 |
# selecting specific features
|
10 |
RATIOS_TO_USE = ['shoulder_to_hip_distance',
|
|
|
39 |
# select only the columns corresponding to the ratios
|
40 |
body_shape_ratios = body_shape_df[RATIOS_TO_USE]
|
41 |
|
42 |
+
calculation_information = ""
|
43 |
+
|
44 |
# calculate euclidean distance for each volunteer
|
45 |
for index, volunteer_row in volunteers_df.iterrows():
|
46 |
print(f"\nProcessing volunteer {volunteer_row['id']}")
|
|
|
61 |
top_scores = top_scores[:3]
|
62 |
break
|
63 |
|
64 |
+
print(f"(body shape {body_index + 1}) Similarity:\t{similarity:.3f}")
|
65 |
+
calculation_information += f"(body shape {body_index + 1}) Similarity:\t{similarity:.3f}\n"
|
66 |
|
67 |
# Print the top 3 best body shapes and scores for the current volunteer
|
68 |
+
print(f"Body shapes and scores are:")
|
69 |
for i, (score, body_shape) in enumerate(top_scores):
|
70 |
print(f"Rank {i + 1}: Body Shape {body_shape} with score {score:.3f}")
|
71 |
+
calculation_information += f"Rank {i + 1}: Body Shape {body_shape} with score {score:.3f}\n"
|
72 |
|
73 |
body_shape_index = top_scores[0][1]
|
74 |
|
75 |
+
return (body_shape_lookup(body_shape_index), calculation_information)
|
volunteers_measures_normalised_updated.csv
DELETED
@@ -1,11 +0,0 @@
|
|
1 |
-
id,shoulder_width,hip_width,shoulder_to_hip_distance,hip_to_ankle_distance,torso_to_leg_ratio,waist_width,thigh_area,torso_area,lower_torso_area,upper_torso_area,full_side_body_area,thigh_normalised,torso_normalised,thigh_to_torso_ratio_normalised,thigh_to_torso_ratio,upper_torso_normalised,lower_torso_normalised,upper_to_lower_torso_normalised_ratio,upper_to_lower_torso_ratio,shoulder_to_hip_ratio,shoulder_to_waist_ratio,waist_to_hip_ratio,thigh_to_body_ratio,upper_torso_to_body_ratio,front_img_jpg,front_img_json,side_img_jpg,side_img_json
|
2 |
-
2A,309,269,-0.6451853254425501,-0.6682325556525112,0.3512052843480335,235,34229,50778,25191,25587,129184,-0.5136746421535362,-0.6393085847116429,0.5341966631577374,0.5341966631577363,-0.6530399046830264,-0.6235671698990638,-0.18048946872604607,-0.18048946872604604,0.46262354383444276,-0.038443926936658726,0.2848605088833572,0.11603850407389217,-0.6352860522185653,data/volunteers_full_res/2. A front.JPG,data/volunteers_full_res/keypoints/2. A front_keypoints.json,data/volunteers_full_res/2. A side.JPG,data/volunteers_full_res/keypoints/2. A side_keypoints.json
|
3 |
-
5A,751,784,0.9144271139787139,1.2087976272001555,-1.393368840086257,820,359036,478409,244104,234305,1317742,1.7908025462101405,1.6581076973120041,1.3373436638658922,1.3373436638658922,1.5898707794468867,1.7184597534399404,-0.7675499961012099,-0.7675499961012098,-1.6885839094884345,-2.105222050862348,2.2088413671422513,0.4115935545489668,-1.3509388020203796,data/volunteers_full_res/5. A front.jpg,data/volunteers_full_res/keypoints/5. A front_keypoints.json,data/volunteers_full_res/5. A side.jpg,data/volunteers_full_res/keypoints/5. A side_keypoints.json
|
4 |
-
7A,888,771,1.2266563354411533,1.4798058058940855,-1.3175843564008711,549,252555,338580,163668,174912,874524,0.9620258960628703,0.8055256743012406,1.2894518062332987,1.2894518062332998,0.8862023059241599,0.7239466229852285,0.3762791226520531,0.37627912265205304,0.49703650905427676,1.5287976601007285,-1.5188804555519377,1.0550592184153258,-0.5666856621104159,data/volunteers_full_res/7. A front.jpg,data/volunteers_full_res/keypoints/7. A front_keypoints.json,data/volunteers_full_res/7. A side.jpg,data/volunteers_full_res/keypoints/7. A side_keypoints.json
|
5 |
-
7B,718,696,1.4860059660807992,1.0493591618169957,0.01163954223114654,537,252642,372623,181265,191358,979634,0.8963355830168163,0.9892525726734528,0.5753963012377995,0.5753963012377995,1.0609718924822236,0.9157212305526141,0.2394609133057007,0.23946091330570068,-0.8575885214005697,0.07635234591621287,-0.8546416455323987,-0.16253115903080398,-0.7317305165035971,data/volunteers_full_res/7. B front.jpg,data/volunteers_full_res/keypoints/7. B front_keypoints.json,data/volunteers_full_res/7. B side.jpg,data/volunteers_full_res/keypoints/7. B side_keypoints.json
|
6 |
-
7C,233,198,-0.7858354516068623,-0.8660844259672597,1.3774253575446744,160,21697,39647,20911,18736,72801,-0.6955531203216642,-0.6341185908976849,-0.7993686079294058,-0.7993686079294058,-0.7209444855652456,-0.5471821012653706,-1.4387549608901573,-1.4387549608901582,0.7791053627807573,0.6936939800717078,-0.4467705325621465,1.4191973718580178,1.4593062364358502,data/volunteers_full_res/7. C front.JPG,data/volunteers_full_res/keypoints/7. C front_keypoints.json,data/volunteers_full_res/7. C side.JPG,data/volunteers_full_res/keypoints/7. C side_keypoints.json
|
7 |
-
9A,211,178,-0.8536044015374634,-0.9242373480961905,1.5839544420431042,141,13005,29217,12972,16245,63173,-0.9885722682153351,-0.8866846225820019,-1.8732405871833364,-1.8732405871833364,-0.810033330890077,-0.9580863087680326,2.305864794991042,2.3058647949910416,0.8763606978908735,0.9019251126074833,-0.6248177905120642,-2.212964050626634,1.4519546942072203,data/volunteers_full_res/9. A front.JPG,data/volunteers_full_res/keypoints/9. A front_keypoints.json,data/volunteers_full_res/9. A side.JPG,data/volunteers_full_res/keypoints/9. A side_keypoints.json
|
8 |
-
9B,368,314,-0.2627907979699269,-0.24282650808339729,-0.40226526773322185,282,54350,88963,42901,46062,225792,-0.4295591307213896,-0.4121599519583041,-0.12990166261860167,-0.12990166261860167,-0.3829103075755036,-0.4391335397560143,0.42862672647856803,0.4286267264785703,0.7250614892098834,-0.08987035878672849,0.558231717572826,-0.8397958260534285,-0.4256038637053921,data/volunteers_full_res/9. B front.jpg,data/volunteers_full_res/keypoints/9. B front_keypoints.json,data/volunteers_full_res/9. B side.jpg,data/volunteers_full_res/keypoints/9. B side_keypoints.json
|
9 |
-
10A,189,179,-0.967607048096815,-0.8516730560853955,-0.2573670846406723,155,13346,21964,10953,11011,49817,-0.9068557521025037,-1.0223264573211466,-0.16457139639188673,-0.16457139639188673,-1.0474087761570212,-0.9941101434453615,-0.29004106968943183,-0.2900410696894318,-0.5840885829069261,-0.5332752158903319,0.19906183414420206,0.2317937959738227,0.1758982832290134,data/volunteers_full_res/10. A front.JPG,data/volunteers_full_res/keypoints/10. A front_keypoints.json,data/volunteers_full_res/10. A side.JPG,data/volunteers_full_res/keypoints/10. A side_keypoints.json
|
10 |
-
11A,203,169,-0.9716968291393029,-0.9277894463065092,0.5540627406776014,147,16750,30912,15171,15741,63617,-0.871621034320157,-0.8781135022156633,-0.8560787634674033,-0.8560787634674033,-0.886623370048677,-0.866576433381505,0.04915099181033875,0.049150991810338746,1.0543983860547377,0.3036992727189106,0.24261567283875252,0.050276534651395643,1.1086845891110646,data/volunteers_full_res/11. A front.jpg,data/volunteers_full_res/keypoints/11. A front_keypoints.json,data/volunteers_full_res/11. A side.jpg,data/volunteers_full_res/keypoints/11. A side_keypoints.json
|
11 |
-
12A,669,672,0.8596304382922542,0.7428807452800266,-0.5077018179835446,567,211624,335094,170606,164488,813075,0.7566719225447575,1.0198257653997465,0.08677258309590243,0.08677258309590243,0.9639151970662792,1.070528089537564,-0.7225470538308504,-0.7225470538308503,-1.2643249750290122,-0.7376568189389741,-0.04850067642283835,-0.06866794381056764,-0.48559890642479764,data/volunteers_full_res/12. A front.jpg,data/volunteers_full_res/keypoints/12. A front_keypoints.json,data/volunteers_full_res/12. A side.jpg,data/volunteers_full_res/keypoints/12. A side_keypoints.json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|