Chris commited on
Commit
c9ec478
·
1 Parent(s): a3281f6

More WIP. Returns a sensible result now!

Browse files
.gitignore CHANGED
@@ -7,4 +7,4 @@ input_img.jpg
7
  app.py
8
  input_img.jpg
9
  requirements.txt
10
- __pycache__
 
7
  app.py
8
  input_img.jpg
9
  requirements.txt
10
+ __pycache__
=1.12 CHANGED
@@ -1,14 +1,14 @@
1
  Requirement already satisfied: xtcocotools in /Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages (1.14.3)
 
2
  Requirement already satisfied: cython>=0.27.3 in /Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages (from xtcocotools) (3.0.7)
 
3
  Requirement already satisfied: setuptools>=18.0 in /Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages (from xtcocotools) (60.2.0)
4
- Requirement already satisfied: numpy>=1.20.0 in /Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages (from xtcocotools) (1.26.3)
5
- Requirement already satisfied: matplotlib>=2.1.0 in /Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages (from xtcocotools) (3.8.2)
6
- Requirement already satisfied: pyparsing>=2.3.1 in /Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages (from matplotlib>=2.1.0->xtcocotools) (3.1.1)
7
- Requirement already satisfied: fonttools>=4.22.0 in /Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages (from matplotlib>=2.1.0->xtcocotools) (4.47.0)
8
- Requirement already satisfied: cycler>=0.10 in /Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages (from matplotlib>=2.1.0->xtcocotools) (0.12.1)
9
  Requirement already satisfied: packaging>=20.0 in /Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages (from matplotlib>=2.1.0->xtcocotools) (23.2)
10
- Requirement already satisfied: python-dateutil>=2.7 in /Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages (from matplotlib>=2.1.0->xtcocotools) (2.8.2)
11
- Requirement already satisfied: contourpy>=1.0.1 in /Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages (from matplotlib>=2.1.0->xtcocotools) (1.2.0)
12
  Requirement already satisfied: kiwisolver>=1.3.1 in /Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages (from matplotlib>=2.1.0->xtcocotools) (1.4.5)
13
- Requirement already satisfied: pillow>=8 in /Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages (from matplotlib>=2.1.0->xtcocotools) (10.2.0)
 
 
14
  Requirement already satisfied: six>=1.5 in /Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages (from python-dateutil>=2.7->matplotlib>=2.1.0->xtcocotools) (1.16.0)
 
1
  Requirement already satisfied: xtcocotools in /Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages (1.14.3)
2
+ Requirement already satisfied: numpy>=1.20.0 in /Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages (from xtcocotools) (1.26.1)
3
  Requirement already satisfied: cython>=0.27.3 in /Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages (from xtcocotools) (3.0.7)
4
+ Requirement already satisfied: matplotlib>=2.1.0 in /Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages (from xtcocotools) (3.8.1)
5
  Requirement already satisfied: setuptools>=18.0 in /Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages (from xtcocotools) (60.2.0)
6
+ Requirement already satisfied: fonttools>=4.22.0 in /Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages (from matplotlib>=2.1.0->xtcocotools) (4.43.1)
7
+ Requirement already satisfied: pillow>=8 in /Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages (from matplotlib>=2.1.0->xtcocotools) (10.1.0)
 
 
 
8
  Requirement already satisfied: packaging>=20.0 in /Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages (from matplotlib>=2.1.0->xtcocotools) (23.2)
9
+ Requirement already satisfied: contourpy>=1.0.1 in /Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages (from matplotlib>=2.1.0->xtcocotools) (1.1.1)
 
10
  Requirement already satisfied: kiwisolver>=1.3.1 in /Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages (from matplotlib>=2.1.0->xtcocotools) (1.4.5)
11
+ Requirement already satisfied: pyparsing>=2.3.1 in /Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages (from matplotlib>=2.1.0->xtcocotools) (3.1.1)
12
+ Requirement already satisfied: python-dateutil>=2.7 in /Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages (from matplotlib>=2.1.0->xtcocotools) (2.8.2)
13
+ Requirement already satisfied: cycler>=0.10 in /Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages (from matplotlib>=2.1.0->xtcocotools) (0.12.1)
14
  Requirement already satisfied: six>=1.5 in /Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages (from python-dateutil>=2.7->matplotlib>=2.1.0->xtcocotools) (1.16.0)
app.py CHANGED
@@ -1,6 +1,7 @@
1
  from keypoints_extraction import predict_pose
2
  from calculate_measures import calculate_all_measures
3
  from calculate_masks import calculate_seg_mask
 
4
 
5
  import os
6
  os.system("pip install xtcocotools>=1.12")
@@ -24,19 +25,25 @@ def generate_output(front_img_path, side_img_path):
24
  side_keypoint_data = side_keypoint_result[1]
25
 
26
  front_seg_mask = calculate_seg_mask(front_img_path)
27
- side_rcnn_mask = calculate_seg_mask(side_img_path)
28
 
29
- measures = calculate_all_measures(front_image, side_image, front_keypoint_data, side_keypoint_data, front_seg_mask, side_rcnn_mask)
30
 
31
- return (front_keypoint_result[0], front_keypoint_result[1], side_keypoint_result[0], side_keypoint_result[1])
 
 
 
 
 
32
 
33
  input_image_front = gr.inputs.Image(type='pil', label="Front Image")
34
  input_image_side = gr.inputs.Image(type='pil', label="Side Image")
35
- output_image_front = gr.outputs.Image(type="pil", label="Front Output Image")
36
- output_text_front = gr.outputs.Textbox(label="Front Output Text")
37
- output_image_side = gr.outputs.Image(type="pil", label="Front Output Image")
38
- output_text_side = gr.outputs.Textbox(label="Side Output Text")
39
-
40
- title = "MMPose detection for ShopByShape"
41
- iface = gr.Interface(fn=generate_output, inputs=[input_image_front, input_image_side], outputs=[output_image_front, output_text_front, output_image_side, output_text_side], title=title)
 
42
  iface.launch()
 
1
  from keypoints_extraction import predict_pose
2
  from calculate_measures import calculate_all_measures
3
  from calculate_masks import calculate_seg_mask
4
+ from select_body_shape import select_body_shape
5
 
6
  import os
7
  os.system("pip install xtcocotools>=1.12")
 
25
  side_keypoint_data = side_keypoint_result[1]
26
 
27
  front_seg_mask = calculate_seg_mask(front_img_path)
28
+ side_rcnn_mask = calculate_seg_mask(side_img_path) # TODO: Is this the correct mask? In the original code there is a function called 'get_rcnn_mask' which is not used anywhere. The name implies that it should be a rcnn mask, but the code actually requests a seg mask.
29
 
30
+ measures_data_frame = calculate_all_measures(front_image, side_image, front_keypoint_data, side_keypoint_data, front_seg_mask, side_rcnn_mask)
31
 
32
+ # TODO: Normalise the measures somehow? Don't understand how this works yet if it is for a single person. Do we need to do this? Or not?
33
+ normalised_measures_data_frame = measures_data_frame
34
+
35
+ selected_body_shape = select_body_shape(normalised_measures_data_frame)
36
+
37
+ return (selected_body_shape)
38
 
39
  input_image_front = gr.inputs.Image(type='pil', label="Front Image")
40
  input_image_side = gr.inputs.Image(type='pil', label="Side Image")
41
+ # output_image_front = gr.outputs.Image(type="pil", label="Front Output Image")
42
+ # output_text_front = gr.outputs.Textbox(label="Front Output Text")
43
+ # output_image_side = gr.outputs.Image(type="pil", label="Front Output Image")
44
+ # output_text_side = gr.outputs.Textbox(label="Side Output Text")
45
+ output_body_shape = gr.outputs.Textbox(label="Body Shape")
46
+
47
+ title = "ShopByShape"
48
+ iface = gr.Interface(fn=generate_output, inputs=[input_image_front, input_image_side], outputs=[output_body_shape], title=title)
49
  iface.launch()
body_shape_lookup.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # TODO: How do we know what the body shape is?
2
+
3
+ def body_shape_lookup(index):
4
+ if index == 1:
5
+ return "Hourglass"
6
+ elif index == 2:
7
+ return "Triangle"
8
+ elif index == 3:
9
+ return "Inverted Triangle"
10
+ elif index == 4:
11
+ return "Rectangle"
12
+ elif index == 5:
13
+ return "Diamond"
14
+ elif index == 6:
15
+ return "Oval"
16
+ elif index == 7:
17
+ return "Round"
18
+ else:
19
+ return "Unknown"
body_shape_measures_normalised.csv ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ id,shoulder_width,hip_width,shoulder_to_hip_distance,hip_to_ankle_distance,torso_to_leg_ratio,waist_width,thigh_area,torso_area,lower_torso_area,upper_torso_area,full_side_body_area,thigh_normalised,torso_normalised,thigh_to_torso_ratio_normalised,thigh_to_torso_ratio,upper_torso_normalised,lower_torso_normalised,upper_to_lower_torso_normalised_ratio,upper_to_lower_torso_ratio,shoulder_to_hip_ratio,shoulder_to_waist_ratio,waist_to_hip_ratio,thigh_to_body_ratio,upper_torso_to_body_ratio,front_img_jpg,front_img_json,side_img_jpg,side_img_json
2
+ 2A,309,269,323.125,454.39453125,0.7111111111111111,235,34229,50778,25191,25587,129184,39.727990098179454,58.935635899540046,0.6740911418330774,0.6740911418330773,29.697627235447065,29.23800866409298,1.015719899964273,1.015719899964273,1.1486988847583643,1.3148936170212766,0.8736059479553904,0.26496315333168197,0.1980663240029725,data/volunteers_full_res/2. A front.JPG,data/volunteers_full_res/keypoints/2. A front_keypoints.json,data/volunteers_full_res/2. A side.JPG,data/volunteers_full_res/keypoints/2. A side_keypoints.json
3
+ 5A,751,784,799.8046875,1538.0859375,0.52,820,359036,478409,244104,234305,1317742,132.59746694466295,176.68373523415272,0.7504791924901079,0.7504791924901079,86.53240759274627,90.15132764140644,0.9598572739488087,0.9598572739488087,0.9579081632653061,0.9158536585365854,1.0459183673469388,0.27246304663583615,0.17780794723094506,data/volunteers_full_res/5. A front.jpg,data/volunteers_full_res/keypoints/5. A front_keypoints.json,data/volunteers_full_res/5. A side.jpg,data/volunteers_full_res/keypoints/5. A side_keypoints.json
4
+ 7A,888,771,895.234375,1694.55078125,0.5283018867924528,549,252555,338580,163668,174912,874524,99.19811098210289,132.9868599565259,0.7459241538188905,0.7459241538188907,68.70162930095061,64.28523065557529,1.0687000513234108,1.0687000513234108,1.1517509727626458,1.6174863387978142,0.7120622568093385,0.2887913882294825,0.20000823305020787,data/volunteers_full_res/7. A front.jpg,data/volunteers_full_res/keypoints/7. A front_keypoints.json,data/volunteers_full_res/7. A side.jpg,data/volunteers_full_res/keypoints/7. A side_keypoints.json
5
+ 7B,718,696,974.501953125,1446.03515625,0.6739130434782609,537,252642,372623,181265,191358,979634,96.55081855617931,142.40330452917252,0.6780096773414416,0.6780096773414416,73.13024571240474,69.27305881676777,1.0556809091661379,1.0556809091661379,1.0316091954022988,1.3370577281191807,0.771551724137931,0.2578942748005888,0.1953362174036426,data/volunteers_full_res/7. B front.jpg,data/volunteers_full_res/keypoints/7. B front_keypoints.json,data/volunteers_full_res/7. B side.jpg,data/volunteers_full_res/keypoints/7. B side_keypoints.json
6
+ 7C,233,198,280.13671875,340.166015625,0.8235294117647058,160,21697,39647,20911,18736,72801,32.398362709200065,59.201635540934454,0.5472545211491412,0.5472545211491412,27.97694260587051,31.22469293506395,0.89598775763952,0.8959877576395199,1.1767676767676767,1.45625,0.8080808080808081,0.2980316204447741,0.25735910221013447,data/volunteers_full_res/7. C front.JPG,data/volunteers_full_res/keypoints/7. C front_keypoints.json,data/volunteers_full_res/7. C side.JPG,data/volunteers_full_res/keypoints/7. C side_keypoints.json
7
+ 9A,211,178,259.423828125,306.591796875,0.8461538461538461,141,13005,29217,12972,16245,63173,20.589812332439678,46.257020139707045,0.4451175685388643,0.44511756853886436,25.719454159206656,20.537565980500386,1.2523126734505088,1.2523126734505088,1.1853932584269662,1.49645390070922,0.7921348314606742,0.2058632643692717,0.25715099805296565,data/volunteers_full_res/9. A front.JPG,data/volunteers_full_res/keypoints/9. A front_keypoints.json,data/volunteers_full_res/9. A side.JPG,data/volunteers_full_res/keypoints/9. A side_keypoints.json
8
+ 9B,368,314,440.0,700.0,0.6285714285714286,282,54350,88963,42901,46062,225792,43.11781039270131,70.57754859182864,0.6109281386643886,0.6109281386643886,36.54264180880603,34.03490678302261,1.0736812661709516,1.0736812661709518,1.1719745222929936,1.3049645390070923,0.8980891719745223,0.24070826247165533,0.20400191326530612,data/volunteers_full_res/9. B front.jpg,data/volunteers_full_res/keypoints/9. B front_keypoints.json,data/volunteers_full_res/9. B side.jpg,data/volunteers_full_res/keypoints/9. B side_keypoints.json
9
+ 10A,189,179,224.580078125,348.486328125,0.6444444444444445,155,13346,21964,10953,11011,49817,23.882954108559645,39.3050505050505,0.6076306683664178,0.6076306683664178,19.704421376393693,19.60062912865681,1.0052953528713595,1.0052953528713595,1.0558659217877095,1.2193548387096773,0.8659217877094972,0.2679005158881506,0.22102896601561717,data/volunteers_full_res/10. A front.JPG,data/volunteers_full_res/keypoints/10. A front_keypoints.json,data/volunteers_full_res/10. A side.JPG,data/volunteers_full_res/keypoints/10. A side_keypoints.json
10
+ 11A,203,169,223.330078125,304.541015625,0.7333333333333333,147,16750,30912,15171,15741,63617,25.30289865121034,46.69631063320681,0.5418607660455487,0.5418607660455487,23.77868224887773,22.917628384329078,1.0375716828158987,1.0375716828158987,1.2011834319526626,1.380952380952381,0.8698224852071006,0.26329440243959945,0.24743386201801404,data/volunteers_full_res/11. A front.jpg,data/volunteers_full_res/keypoints/11. A front_keypoints.json,data/volunteers_full_res/11. A side.jpg,data/volunteers_full_res/keypoints/11. A side_keypoints.json
11
+ 12A,669,672,783.056640625,1269.091796875,0.6170212765957447,567,211624,335094,170606,164488,813075,90.92243084724528,143.97025404645413,0.6315362256560846,0.6315362256560846,70.67085399199374,73.2994000544604,0.9641395964971924,0.9641395964971924,0.9955357142857143,1.17989417989418,0.84375,0.26027611228976416,0.20230360052885651,data/volunteers_full_res/12. A front.jpg,data/volunteers_full_res/keypoints/12. A front_keypoints.json,data/volunteers_full_res/12. A side.jpg,data/volunteers_full_res/keypoints/12. A side_keypoints.json
body_shape_measures_normalised_updated.csv ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ id,shoulder_width,hip_width,shoulder_to_hip_distance,hip_to_ankle_distance,torso_to_leg_ratio,waist_width,thigh_area,torso_area,lower_torso_area,upper_torso_area,full_side_body_area,thigh_normalised,torso_normalised,thigh_to_torso_ratio_normalised,thigh_to_torso_ratio,upper_torso_normalised,lower_torso_normalised,upper_to_lower_torso_normalised_ratio,upper_to_lower_torso_ratio,shoulder_to_hip_ratio,shoulder_to_waist_ratio,waist_to_hip_ratio,thigh_to_body_ratio,upper_torso_to_body_ratio,front_img_jpg,front_img_json,side_img_jpg,side_img_json
2
+ 2A,309,269,-0.6451853254425501,-0.6682325556525112,0.3512052843480335,235,34229,50778,25191,25587,129184,-0.5136746421535362,-0.6393085847116429,0.5341966631577374,0.5341966631577363,-0.6530399046830264,-0.6235671698990638,-0.18048946872604607,-0.18048946872604604,0.46262354383444276,-0.038443926936658726,0.2848605088833572,0.11603850407389217,-0.6352860522185653,data/volunteers_full_res/2. A front.JPG,data/volunteers_full_res/keypoints/2. A front_keypoints.json,data/volunteers_full_res/2. A side.JPG,data/volunteers_full_res/keypoints/2. A side_keypoints.json
3
+ 5A,751,784,0.9144271139787139,1.2087976272001555,-1.393368840086257,820,359036,478409,244104,234305,1317742,1.7908025462101405,1.6581076973120041,1.3373436638658922,1.3373436638658922,1.5898707794468867,1.7184597534399404,-0.7675499961012099,-0.7675499961012098,-1.6885839094884345,-2.105222050862348,2.2088413671422513,0.4115935545489668,-1.3509388020203796,data/volunteers_full_res/5. A front.jpg,data/volunteers_full_res/keypoints/5. A front_keypoints.json,data/volunteers_full_res/5. A side.jpg,data/volunteers_full_res/keypoints/5. A side_keypoints.json
4
+ 7A,888,771,1.2266563354411533,1.4798058058940855,-1.3175843564008711,549,252555,338580,163668,174912,874524,0.9620258960628703,0.8055256743012406,1.2894518062332987,1.2894518062332998,0.8862023059241599,0.7239466229852285,0.3762791226520531,0.37627912265205304,0.49703650905427676,1.5287976601007285,-1.5188804555519377,1.0550592184153258,-0.5666856621104159,data/volunteers_full_res/7. A front.jpg,data/volunteers_full_res/keypoints/7. A front_keypoints.json,data/volunteers_full_res/7. A side.jpg,data/volunteers_full_res/keypoints/7. A side_keypoints.json
5
+ 7B,718,696,1.4860059660807992,1.0493591618169957,0.01163954223114654,537,252642,372623,181265,191358,979634,0.8963355830168163,0.9892525726734528,0.5753963012377995,0.5753963012377995,1.0609718924822236,0.9157212305526141,0.2394609133057007,0.23946091330570068,-0.8575885214005697,0.07635234591621287,-0.8546416455323987,-0.16253115903080398,-0.7317305165035971,data/volunteers_full_res/7. B front.jpg,data/volunteers_full_res/keypoints/7. B front_keypoints.json,data/volunteers_full_res/7. B side.jpg,data/volunteers_full_res/keypoints/7. B side_keypoints.json
6
+ 7C,233,198,-0.7858354516068623,-0.8660844259672597,1.3774253575446744,160,21697,39647,20911,18736,72801,-0.6955531203216642,-0.6341185908976849,-0.7993686079294058,-0.7993686079294058,-0.7209444855652456,-0.5471821012653706,-1.4387549608901573,-1.4387549608901582,0.7791053627807573,0.6936939800717078,-0.4467705325621465,1.4191973718580178,1.4593062364358502,data/volunteers_full_res/7. C front.JPG,data/volunteers_full_res/keypoints/7. C front_keypoints.json,data/volunteers_full_res/7. C side.JPG,data/volunteers_full_res/keypoints/7. C side_keypoints.json
7
+ 9A,211,178,-0.8536044015374634,-0.9242373480961905,1.5839544420431042,141,13005,29217,12972,16245,63173,-0.9885722682153351,-0.8866846225820019,-1.8732405871833364,-1.8732405871833364,-0.810033330890077,-0.9580863087680326,2.305864794991042,2.3058647949910416,0.8763606978908735,0.9019251126074833,-0.6248177905120642,-2.212964050626634,1.4519546942072203,data/volunteers_full_res/9. A front.JPG,data/volunteers_full_res/keypoints/9. A front_keypoints.json,data/volunteers_full_res/9. A side.JPG,data/volunteers_full_res/keypoints/9. A side_keypoints.json
8
+ 9B,368,314,-0.2627907979699269,-0.24282650808339729,-0.40226526773322185,282,54350,88963,42901,46062,225792,-0.4295591307213896,-0.4121599519583041,-0.12990166261860167,-0.12990166261860167,-0.3829103075755036,-0.4391335397560143,0.42862672647856803,0.4286267264785703,0.7250614892098834,-0.08987035878672849,0.558231717572826,-0.8397958260534285,-0.4256038637053921,data/volunteers_full_res/9. B front.jpg,data/volunteers_full_res/keypoints/9. B front_keypoints.json,data/volunteers_full_res/9. B side.jpg,data/volunteers_full_res/keypoints/9. B side_keypoints.json
9
+ 10A,189,179,-0.967607048096815,-0.8516730560853955,-0.2573670846406723,155,13346,21964,10953,11011,49817,-0.9068557521025037,-1.0223264573211466,-0.16457139639188673,-0.16457139639188673,-1.0474087761570212,-0.9941101434453615,-0.29004106968943183,-0.2900410696894318,-0.5840885829069261,-0.5332752158903319,0.19906183414420206,0.2317937959738227,0.1758982832290134,data/volunteers_full_res/10. A front.JPG,data/volunteers_full_res/keypoints/10. A front_keypoints.json,data/volunteers_full_res/10. A side.JPG,data/volunteers_full_res/keypoints/10. A side_keypoints.json
10
+ 11A,203,169,-0.9716968291393029,-0.9277894463065092,0.5540627406776014,147,16750,30912,15171,15741,63617,-0.871621034320157,-0.8781135022156633,-0.8560787634674033,-0.8560787634674033,-0.886623370048677,-0.866576433381505,0.04915099181033875,0.049150991810338746,1.0543983860547377,0.3036992727189106,0.24261567283875252,0.050276534651395643,1.1086845891110646,data/volunteers_full_res/11. A front.jpg,data/volunteers_full_res/keypoints/11. A front_keypoints.json,data/volunteers_full_res/11. A side.jpg,data/volunteers_full_res/keypoints/11. A side_keypoints.json
11
+ 12A,669,672,0.8596304382922542,0.7428807452800266,-0.5077018179835446,567,211624,335094,170606,164488,813075,0.7566719225447575,1.0198257653997465,0.08677258309590243,0.08677258309590243,0.9639151970662792,1.070528089537564,-0.7225470538308504,-0.7225470538308503,-1.2643249750290122,-0.7376568189389741,-0.04850067642283835,-0.06866794381056764,-0.48559890642479764,data/volunteers_full_res/12. A front.jpg,data/volunteers_full_res/keypoints/12. A front_keypoints.json,data/volunteers_full_res/12. A side.jpg,data/volunteers_full_res/keypoints/12. A side_keypoints.json
calculate_masks.py CHANGED
@@ -1,4 +1,3 @@
1
- from PIL import Image
2
  from transformers import SegformerImageProcessor, AutoModelForSemanticSegmentation
3
  import torch.nn as nn
4
 
@@ -6,14 +5,6 @@ def calculate_seg_mask(image):
6
  processor = SegformerImageProcessor.from_pretrained("mattmdjaga/segformer_b2_clothes")
7
  model = AutoModelForSemanticSegmentation.from_pretrained("mattmdjaga/segformer_b2_clothes")
8
 
9
- class_names = {
10
- 0: "Background", 1: "Hat", 2: "Hair", 3: "Sunglasses",
11
- 4: "Upper-clothes", 5: "Skirt", 6: "Pants", 7: "Dress",
12
- 8: "Belt", 9: "Left-shoe", 10: "Right-shoe", 11: "Face",
13
- 12: "Left-leg", 13: "Right-leg", 14: "Left-arm", 15: "Right-arm",
14
- 16: "Bag", 17: "Scarf"
15
- }
16
-
17
  inputs = processor(images=image, return_tensors="pt")
18
 
19
  outputs = model(**inputs)
@@ -27,4 +18,4 @@ def calculate_seg_mask(image):
27
  )
28
 
29
  pred_seg = upsampled_logits.argmax(dim=1)[0]
30
- return pred_seg
 
 
1
  from transformers import SegformerImageProcessor, AutoModelForSemanticSegmentation
2
  import torch.nn as nn
3
 
 
5
  processor = SegformerImageProcessor.from_pretrained("mattmdjaga/segformer_b2_clothes")
6
  model = AutoModelForSemanticSegmentation.from_pretrained("mattmdjaga/segformer_b2_clothes")
7
 
 
 
 
 
 
 
 
 
8
  inputs = processor(images=image, return_tensors="pt")
9
 
10
  outputs = model(**inputs)
 
18
  )
19
 
20
  pred_seg = upsampled_logits.argmax(dim=1)[0]
21
+ return pred_seg
calculate_measures.py CHANGED
@@ -33,6 +33,9 @@ def get_volume_result(mask_of_interest, original_image, max_x, min_x, max_y, min
33
  return None
34
 
35
  def calculate_all_measures(front_image, side_image, front_keypoint_data, side_keypoint_data, front_seg_mask, side_rcnn_mask):
 
 
 
36
  results_dict = {}
37
 
38
  front_keypoints = front_keypoint_data['keypoints']
@@ -128,6 +131,10 @@ def calculate_all_measures(front_image, side_image, front_keypoint_data, side_ke
128
  results_dict['upper_torso_to_body_ratio'] = upper_torso_area / full_side_body_area
129
  results_dict['upper_torso_to_body_ratio'] = upper_torso_area / full_side_body_area
130
 
131
- results_df = pd.DataFrame(results_dict)
 
132
 
133
- return results_dict
 
 
 
 
33
  return None
34
 
35
  def calculate_all_measures(front_image, side_image, front_keypoint_data, side_keypoint_data, front_seg_mask, side_rcnn_mask):
36
+ # Initialize an empty DataFrame
37
+ results = []
38
+
39
  results_dict = {}
40
 
41
  front_keypoints = front_keypoint_data['keypoints']
 
131
  results_dict['upper_torso_to_body_ratio'] = upper_torso_area / full_side_body_area
132
  results_dict['upper_torso_to_body_ratio'] = upper_torso_area / full_side_body_area
133
 
134
+ # TODO: Temporary to force thigns to work.
135
+ results_dict['id'] = "1"
136
 
137
+ results.append(results_dict)
138
+
139
+ results_df = pd.DataFrame(results)
140
+ return results_df
select_body_shape.py ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import numpy as np
3
+ import pandas as pd
4
+ from numpy import dot
5
+ from numpy.linalg import norm
6
+ from body_shape_lookup import body_shape_lookup
7
+
8
+ BODY_SHAPE_MEASURES = "body_shape_measures_normalised_updated.csv"
9
+ VOLUNTEERS_MEASURES = "volunteers_measures_normalised_updated.csv"
10
+
11
+ # selecting specific features
12
+ RATIOS_TO_USE = ['shoulder_to_hip_distance',
13
+ 'hip_to_ankle_distance',
14
+ 'thigh_to_torso_ratio_normalised',
15
+ 'upper_to_lower_torso_normalised_ratio',
16
+ 'shoulder_to_hip_ratio',
17
+ 'thigh_to_body_ratio',
18
+ 'upper_torso_to_body_ratio']
19
+
20
+ def extract_digits(input_string):
21
+ # find digits in the format '1A' or '12B'
22
+ match = re.search(r'\d+', input_string)
23
+ if match:
24
+ return int(match.group())
25
+ else:
26
+ return -1 # not found
27
+
28
+ def is_match(row):
29
+ # check whether there was a match for this record
30
+ # extract the user class from id
31
+ ground_truth = extract_digits(row['Volunteer_ID'])
32
+ return ground_truth == row['Rank_1_Body_Shape'] or ground_truth == row['Rank_2_Body_Shape'] or ground_truth == row['Rank_3_Body_Shape']
33
+
34
+ def select_body_shape(normalised_body_shape_measures):
35
+ # load the body shape measures
36
+ body_shape_df = pd.read_csv(BODY_SHAPE_MEASURES)
37
+ # body_shape_df = normalised_body_shape_measures
38
+
39
+ # load the volunteers measures
40
+ # volunteers_df = pd.read_csv(VOLUNTEERS_MEASURES)
41
+ volunteers_df = normalised_body_shape_measures
42
+
43
+ # select only the columns corresponding to the ratios
44
+ body_shape_ratios = body_shape_df[RATIOS_TO_USE]
45
+
46
+ # Create a DataFrame to store the results
47
+ results_df = pd.DataFrame(columns=["Volunteer_ID", "Rank_1_Body_Shape", "Score_1",
48
+ "Rank_2_Body_Shape", "Score_2",
49
+ "Rank_3_Body_Shape", "Score_3"])
50
+
51
+ # calculate euclidean distance for each volunteer
52
+ for index, volunteer_row in volunteers_df.iterrows():
53
+ print(f"\nProcessing volunteer {volunteer_row['id']}")
54
+ volunteer_ratios = volunteer_row[RATIOS_TO_USE]
55
+
56
+ top_scores = [(-1000, 'n/a')] * 3
57
+
58
+ for body_index, body_shape_row in body_shape_ratios.iterrows():
59
+ # euclidean distance
60
+ # similarity = np.linalg.norm(volunteer_ratios - body_shape_row)
61
+ # calculate cosine similarity
62
+ similarity = dot(volunteer_ratios, body_shape_row) / (norm(volunteer_ratios)*norm(body_shape_row))
63
+
64
+ # Check if the current score is among the top 3
65
+ for i, (score, _) in enumerate(top_scores):
66
+ if similarity > score:
67
+ top_scores.insert(i, (similarity, body_index + 1))
68
+ top_scores = top_scores[:3]
69
+ break
70
+
71
+ print(f"Volunteer {volunteer_row['id']} (body shape {body_index + 1}) Similarity:\t{similarity:.3f}")
72
+
73
+ # Print the top 3 best body shapes and scores for the current volunteer
74
+ print(f"Volunteer {volunteer_row['id']} top 3 body shapes and scores are:")
75
+ for i, (score, body_shape) in enumerate(top_scores):
76
+ print(f"Rank {i + 1}: Body Shape {body_shape} with score {score:.3f}")
77
+
78
+ body_shape_index = top_scores[0][1]
79
+
80
+ return body_shape_lookup(body_shape_index)
volunteers_measures_normalised_updated.csv ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ id,shoulder_width,hip_width,shoulder_to_hip_distance,hip_to_ankle_distance,torso_to_leg_ratio,waist_width,thigh_area,torso_area,lower_torso_area,upper_torso_area,full_side_body_area,thigh_normalised,torso_normalised,thigh_to_torso_ratio_normalised,thigh_to_torso_ratio,upper_torso_normalised,lower_torso_normalised,upper_to_lower_torso_normalised_ratio,upper_to_lower_torso_ratio,shoulder_to_hip_ratio,shoulder_to_waist_ratio,waist_to_hip_ratio,thigh_to_body_ratio,upper_torso_to_body_ratio,front_img_jpg,front_img_json,side_img_jpg,side_img_json
2
+ 2A,309,269,-0.6451853254425501,-0.6682325556525112,0.3512052843480335,235,34229,50778,25191,25587,129184,-0.5136746421535362,-0.6393085847116429,0.5341966631577374,0.5341966631577363,-0.6530399046830264,-0.6235671698990638,-0.18048946872604607,-0.18048946872604604,0.46262354383444276,-0.038443926936658726,0.2848605088833572,0.11603850407389217,-0.6352860522185653,data/volunteers_full_res/2. A front.JPG,data/volunteers_full_res/keypoints/2. A front_keypoints.json,data/volunteers_full_res/2. A side.JPG,data/volunteers_full_res/keypoints/2. A side_keypoints.json
3
+ 5A,751,784,0.9144271139787139,1.2087976272001555,-1.393368840086257,820,359036,478409,244104,234305,1317742,1.7908025462101405,1.6581076973120041,1.3373436638658922,1.3373436638658922,1.5898707794468867,1.7184597534399404,-0.7675499961012099,-0.7675499961012098,-1.6885839094884345,-2.105222050862348,2.2088413671422513,0.4115935545489668,-1.3509388020203796,data/volunteers_full_res/5. A front.jpg,data/volunteers_full_res/keypoints/5. A front_keypoints.json,data/volunteers_full_res/5. A side.jpg,data/volunteers_full_res/keypoints/5. A side_keypoints.json
4
+ 7A,888,771,1.2266563354411533,1.4798058058940855,-1.3175843564008711,549,252555,338580,163668,174912,874524,0.9620258960628703,0.8055256743012406,1.2894518062332987,1.2894518062332998,0.8862023059241599,0.7239466229852285,0.3762791226520531,0.37627912265205304,0.49703650905427676,1.5287976601007285,-1.5188804555519377,1.0550592184153258,-0.5666856621104159,data/volunteers_full_res/7. A front.jpg,data/volunteers_full_res/keypoints/7. A front_keypoints.json,data/volunteers_full_res/7. A side.jpg,data/volunteers_full_res/keypoints/7. A side_keypoints.json
5
+ 7B,718,696,1.4860059660807992,1.0493591618169957,0.01163954223114654,537,252642,372623,181265,191358,979634,0.8963355830168163,0.9892525726734528,0.5753963012377995,0.5753963012377995,1.0609718924822236,0.9157212305526141,0.2394609133057007,0.23946091330570068,-0.8575885214005697,0.07635234591621287,-0.8546416455323987,-0.16253115903080398,-0.7317305165035971,data/volunteers_full_res/7. B front.jpg,data/volunteers_full_res/keypoints/7. B front_keypoints.json,data/volunteers_full_res/7. B side.jpg,data/volunteers_full_res/keypoints/7. B side_keypoints.json
6
+ 7C,233,198,-0.7858354516068623,-0.8660844259672597,1.3774253575446744,160,21697,39647,20911,18736,72801,-0.6955531203216642,-0.6341185908976849,-0.7993686079294058,-0.7993686079294058,-0.7209444855652456,-0.5471821012653706,-1.4387549608901573,-1.4387549608901582,0.7791053627807573,0.6936939800717078,-0.4467705325621465,1.4191973718580178,1.4593062364358502,data/volunteers_full_res/7. C front.JPG,data/volunteers_full_res/keypoints/7. C front_keypoints.json,data/volunteers_full_res/7. C side.JPG,data/volunteers_full_res/keypoints/7. C side_keypoints.json
7
+ 9A,211,178,-0.8536044015374634,-0.9242373480961905,1.5839544420431042,141,13005,29217,12972,16245,63173,-0.9885722682153351,-0.8866846225820019,-1.8732405871833364,-1.8732405871833364,-0.810033330890077,-0.9580863087680326,2.305864794991042,2.3058647949910416,0.8763606978908735,0.9019251126074833,-0.6248177905120642,-2.212964050626634,1.4519546942072203,data/volunteers_full_res/9. A front.JPG,data/volunteers_full_res/keypoints/9. A front_keypoints.json,data/volunteers_full_res/9. A side.JPG,data/volunteers_full_res/keypoints/9. A side_keypoints.json
8
+ 9B,368,314,-0.2627907979699269,-0.24282650808339729,-0.40226526773322185,282,54350,88963,42901,46062,225792,-0.4295591307213896,-0.4121599519583041,-0.12990166261860167,-0.12990166261860167,-0.3829103075755036,-0.4391335397560143,0.42862672647856803,0.4286267264785703,0.7250614892098834,-0.08987035878672849,0.558231717572826,-0.8397958260534285,-0.4256038637053921,data/volunteers_full_res/9. B front.jpg,data/volunteers_full_res/keypoints/9. B front_keypoints.json,data/volunteers_full_res/9. B side.jpg,data/volunteers_full_res/keypoints/9. B side_keypoints.json
9
+ 10A,189,179,-0.967607048096815,-0.8516730560853955,-0.2573670846406723,155,13346,21964,10953,11011,49817,-0.9068557521025037,-1.0223264573211466,-0.16457139639188673,-0.16457139639188673,-1.0474087761570212,-0.9941101434453615,-0.29004106968943183,-0.2900410696894318,-0.5840885829069261,-0.5332752158903319,0.19906183414420206,0.2317937959738227,0.1758982832290134,data/volunteers_full_res/10. A front.JPG,data/volunteers_full_res/keypoints/10. A front_keypoints.json,data/volunteers_full_res/10. A side.JPG,data/volunteers_full_res/keypoints/10. A side_keypoints.json
10
+ 11A,203,169,-0.9716968291393029,-0.9277894463065092,0.5540627406776014,147,16750,30912,15171,15741,63617,-0.871621034320157,-0.8781135022156633,-0.8560787634674033,-0.8560787634674033,-0.886623370048677,-0.866576433381505,0.04915099181033875,0.049150991810338746,1.0543983860547377,0.3036992727189106,0.24261567283875252,0.050276534651395643,1.1086845891110646,data/volunteers_full_res/11. A front.jpg,data/volunteers_full_res/keypoints/11. A front_keypoints.json,data/volunteers_full_res/11. A side.jpg,data/volunteers_full_res/keypoints/11. A side_keypoints.json
11
+ 12A,669,672,0.8596304382922542,0.7428807452800266,-0.5077018179835446,567,211624,335094,170606,164488,813075,0.7566719225447575,1.0198257653997465,0.08677258309590243,0.08677258309590243,0.9639151970662792,1.070528089537564,-0.7225470538308504,-0.7225470538308503,-1.2643249750290122,-0.7376568189389741,-0.04850067642283835,-0.06866794381056764,-0.48559890642479764,data/volunteers_full_res/12. A front.jpg,data/volunteers_full_res/keypoints/12. A front_keypoints.json,data/volunteers_full_res/12. A side.jpg,data/volunteers_full_res/keypoints/12. A side_keypoints.json