Spaces:
Runtime error
Runtime error
import cv2 | |
import gradio as gr | |
import numpy as np | |
import random | |
import base64 | |
import requests | |
import json | |
import time | |
def tryon(person_img, garment_img, seed, randomize_seed): | |
post_start_time = time.time() | |
if person_img is None or garment_img is None: | |
gr.Warning("Empty image") | |
return None, None, "Empty image" | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
encoded_person_img = cv2.imencode('.jpg', cv2.cvtColor(person_img, cv2.COLOR_RGB2BGR))[1].tobytes() | |
encoded_person_img = base64.b64encode(encoded_person_img).decode('utf-8') | |
encoded_garment_img = cv2.imencode('.jpg', cv2.cvtColor(garment_img, cv2.COLOR_RGB2BGR))[1].tobytes() | |
encoded_garment_img = base64.b64encode(encoded_garment_img).decode('utf-8') | |
url = "http://" + os.environ['tryon_url'] + "Submit" | |
token = os.environ['token'] | |
cookie = os.environ['Cookie'] | |
referer = os.environ['referer'] | |
headers = {'Content-Type': 'application/json', 'token': token, 'Cookie': cookie, 'referer': referer} | |
data = { | |
"clothImage": encoded_garment_img, | |
"humanImage": encoded_person_img, | |
"seed": seed | |
} | |
try: | |
response = requests.post(url, headers=headers, data=json.dumps(data), timeout=50) | |
if response.status_code == 200: | |
result = response.json()['result'] | |
status = result['status'] | |
if status == "success": | |
uuid = result['result'] | |
except Exception as err: | |
print(f"Post Exception Error: {err}") | |
raise gr.Error("Too many users, please try again later") | |
post_end_time = time.time() | |
print(f"post time used: {post_end_time-post_start_time}") | |
get_start_time = time.time() | |
time.sleep(9) | |
Max_Retry = 12 | |
result_img = None | |
info = "" | |
err_log = "" | |
for i in range(Max_Retry): | |
try: | |
url = "http://" + os.environ['tryon_url'] + "Query?taskId=" + uuid | |
response = requests.get(url, headers=headers, timeout=20) | |
if response.status_code == 200: | |
result = response.json()['result'] | |
status = result['status'] | |
if status == "success": | |
result = base64.b64decode(result['result']) | |
result_np = np.frombuffer(result, np.uint8) | |
result_img = cv2.imdecode(result_np, cv2.IMREAD_UNCHANGED) | |
result_img = cv2.cvtColor(result_img, cv2.COLOR_RGB2BGR) | |
info = "Success" | |
break | |
elif status == "error": | |
err_log = f"Status is Error" | |
info = "Error" | |
break | |
else: | |
err_log = "URL error, please contact the admin" | |
info = "URL error, please contact the admin" | |
break | |
except requests.exceptions.ReadTimeout: | |
err_log = "Http Timeout" | |
info = "Http Timeout, please try again later" | |
except Exception as err: | |
err_log = f"Get Exception Error: {err}" | |
time.sleep(1) | |
get_end_time = time.time() | |
print(f"get time used: {get_end_time-get_start_time}") | |
print(f"all time used: {get_end_time-get_start_time+post_end_time-post_start_time}") | |
if info == "": | |
err_log = f"No image after {Max_Retry} retries" | |
info = "Too many users, please try again later" | |
if info != "Success": | |
print(f"Error Log: {err_log}") | |
gr.Warning("Too many users, please try again later") | |
return result_img, seed, info | |
MAX_SEED = 999999 | |
css = """ | |
#col-left { | |
margin: 0 auto; | |
max-width: 430px; | |
} | |
#col-mid { | |
margin: 0 auto; | |
max-width: 430px; | |
} | |
#col-right { | |
margin: 0 auto; | |
max-width: 430px; | |
} | |
""" | |
with gr.Blocks(css=css) as Tryon: | |
with gr.Row(): | |
with gr.Column(elem_id="col-left"): | |
gr.HTML("Step 1: Upload a person image ⬇️") | |
with gr.Column(elem_id="col-mid"): | |
gr.HTML("Step 2: Upload a garment image ⬇️") | |
with gr.Column(elem_id="col-right"): | |
gr.HTML("Step 3: Press 'Run' to get try-on results") | |
with gr.Row(): | |
with gr.Column(elem_id="col-left"): | |
imgs = gr.Image(label="Person image", source='upload', type="numpy") | |
with gr.Column(elem_id="col-mid"): | |
garm_img = gr.Image(label="Garment image", source='upload', type="numpy") | |
with gr.Column(elem_id="col-right"): | |
image_out = gr.Image(label="Result") | |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
randomize_seed = gr.Checkbox(label="Random seed", value=True) | |
test_button = gr.Button(value="Run", elem_id="button") | |
test_button.click(fn=tryon, inputs=[imgs, garm_img, seed, randomize_seed], outputs=[image_out, seed, "Result Info"], api_name=False, concurrency_limit=10) | |
Tryon.launch() | |